| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Surface reconstruction modulated superconductivity on quasi-2D iron pnictide superconductor KCa2Fe4As4F2 |
| Wenjing Zeng(曾文静)1, Zongyuan Zhang(张宗源)1,2,†, Xiaoyan Dong(董晓燕)1, Yubing Tu(涂玉兵)1,2, Yanwei Wu(吴彦玮)1, Teng Wang(王腾)3, Fan Zhang(张凡)5, Shuai Shao(邵帅)1, Jie Hou(侯杰)1,2, Xingyuan Hou(侯兴元)1,2, Ning Hao(郝宁)4, Gang Mu(牟刚)3,‡, and Lei Shan(单磊)1,2,§ |
1 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China; 2 Center of Free Electron Laser and High Magnetic Field, Institutes of Physical Science and Information Technology, Hefei 230601, China; 3 State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 4 Anhui Provincial Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 5 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
|
|
Abstract Iron-based superconductors (FeSCs) feature a complex phase diagram, and their diverse cleavage terminations offer a versatile platform for modulating surface electronic states and investigating the underlying superconducting mechanisms. In this study, we explore the surface modulation of KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$ using scanning tunneling microscopy/spectroscopy. Cryogenically cleaved surfaces reveal multiple configurations, including $\sqrt 2 \times \sqrt 2$ reconstruction, $1 \times 2$ and $1 \times 3$ stripes, as well as nanoscale vacancies. Reducing potassium coverage induces hole doping, which shifts the density of states peak toward the Fermi level and suppresses the superconducting gap from 4.8 meV to 3.2 meV. This behavior is reminiscent of the Van Hove singularity observed in hole-doped 122-type FeSCs. The band structure does not undergo a simple rigid shift, and the evolution of superconductivity can be attributed to the interplay between surface carriers and electronic correlations. Additionally, a V-shaped gap is observed at a unique location preserving the FeAs bilayer structure, where interlayer coupling effects are likely involved. The diversity of surface structures and electronic states in K12442 enhances our understanding of FeSCs and facilitates the modulation and application of FeAs superconducting layers.
|
Received: 20 March 2025
Revised: 23 April 2025
Accepted manuscript online: 08 May 2025
|
|
PACS:
|
74.55.+v
|
(Tunneling phenomena: single particle tunneling and STM)
|
| |
73.25.+i
|
(Surface conductivity and carrier phenomena)
|
| |
74.25.-q
|
(Properties of superconductors)
|
| |
07.79.Cz
|
(Scanning tunneling microscopes)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2024YFA1611103 and 2022YFA1403203), the Innovation Program for Quantum Science and Technology (Grant Nos. 2024ZD0301300 and 2021ZD0302802), and the National Natural Science Foundation of China (Grant Nos. 12474128, 12374133, 12204008, and 12104004). |
Corresponding Authors:
Zongyuan Zhang, Gang Mu, Lei Shan
E-mail: zongyuanzhang@ahu.edu.cn;mugang@mail.sim.ac.cn;lshan@ahu.edu.cn
|
Cite this article:
Wenjing Zeng(曾文静), Zongyuan Zhang(张宗源), Xiaoyan Dong(董晓燕), Yubing Tu(涂玉兵), Yanwei Wu(吴彦玮), Teng Wang(王腾), Fan Zhang(张凡), Shuai Shao(邵帅), Jie Hou(侯杰), Xingyuan Hou(侯兴元), Ning Hao(郝宁), Gang Mu(牟刚), and Lei Shan(单磊) Surface reconstruction modulated superconductivity on quasi-2D iron pnictide superconductor KCa2Fe4As4F2 2025 Chin. Phys. B 34 087402
|
[1] Paglione J and Greene R L 2010 Nat. Phys. 6 645 [2] Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J and Kotliar G 2022 Nature 601 35 [3] Yi M, Zhang Y, Shen Z X and Lu D H 2017 Npj Quantum Mater. 2 57 [4] Kordyuk A A 2012 Low Temp. Phys. 38 888 [5] Ishida S, Song D, Ogino H, Iyo A and Eisaki H 2017 Phys. Rev. B 95 014517 [6] Canfield P C and Bud’ko S L 2010 Ann. Rev. Condens. Matter Phys. 1 27 [7] Yamazaki T, Takeshita N, Kobayashi R, Fukazawa H, Kohori Y, Kihou K, Lee C H, Kito H, Iyo A and Eisaki H 2010 Phys. Rev. B 81 224514 [8] Alireza P L, Ko Y T C, Gillett J, Petrone C M, Cole J M, Lonzarich G G and Sebastian S E 2009 J. Phys.: Condens. Matter 21 012208 [9] Wen C H P, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel Hafiez M, Chareev D A, Vasiliev A N, Peng R and Feng D L 2016 Nat. Commun. 7 6433 [10] Niu X H, Chen S D, Jiang J, Ye Z R, Yu T L, Xu D F, Xu M, Feng Y, Yan Y J, Xie B P, Zhao J, Gu D C, Sun L L, Mao Q, Wang H, Fang M, Zhang C J, Hu J P, Sun Z and Feng D L 2016 Phys. Rev. B 93 054516 [11] Wang Q Y, Li Z, ZhangWH, Zhang Z C, Zhang J S, LiW, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402 [12] Song C L, Zhang H M, Zhong Y, Hu X P, Ji S H, Wang L L, He K, Ma X C and Xue Q K 2016 Phys. Rev. Lett. 116 157001 [13] Zhang C, Hu T, Wang T, Wu Y, Yu A, Chu J, Zhang H, Zhang X, Xiao H, Peng W, Di Z, Qiao S and Mu G 2021 2D Mater. 8 025024 [14] Chang K, Deng P, Zhang T, Lin H C, Zhao K, Ji S H, Wang L L, He K, Ma X C, Chen X and Xue Q K 2015 Europhys. Lett. 109 28003 [15] Ueda S, Yamagishi T, Takeda S, Agatsuma S, Takano S, Mitsuda A and Naito M 2011 Physica C 471 1167 [16] Li M, Li G, Cao L, Zhou X T, Wang X C, Jin C Q, Chiu C K, Pennycook S J, Wang Z Q and Gao H J 2022 Nature 606 890 [17] Nag P K, Scott K, De Carvalho V S, Byland J K, Yang X Z,Walker M, Greenberg A G, Klavins P, Miranda E, Gozar A, Taufour V, Fernandes R M and Da Silva Neto E H 2024 Nat. Phys. 21 89 [18] Gao M, Ma F J, Lu Z Y and Xiang T 2010 Phys. Rev. B 81 193409 [19] Liu W Y, Cao L, Zhu S Y, Kong L Y, Wang G W, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F Z, Kondo T, Du S X, Cao G H, Shin S, Fu L, Yin Z P, Gao H J and Ding H 2020 Nat. Commun. 11 5866 [20] Shao S, Zhang F, Zhang Z Y, Wang T, Wu Y W, Tu Y B, Hou J, Hou X Y, Hao N, Mu G and Shan L 2023 Sci. China-Phys. Mech. Astron. 66 287412 [21] Duan W, Chen K L, Hong W S, Chen X Y, Yang H, Li S L, Luo H Q and Wen H H 2021 Phys. Rev. B 103 214518 [22] Stolyarov V S, Pervakov K S, Astrakhantseva A S, Golovchanskiy I A, Vyalikh D V, Kim T K, Eremeev S V, Vlasenko V A, Pudalov V M, Golubov A A, Chulkov E V and Roditchev D 2020 J. Phys. Chem. Lett. 11 9393 [23] Koepernik K, Johnston S, Heumen V, Huang Y, Kaas J, Goedkoop J B, Golden M S and Brink J V D 2012 Phys. Rev. Lett. 109 127001 [24] Li A, Yin J X, Wang J H, Wu Z, Ma J H, Sefat A S, Sales B C, Mandrus D G, McGuire M A, Jin R Y, Zhang C L, Dai P C, Lv B, Chu C W, Liang X J, Hor P H, Ting C S and Pan S H 2019 Phys. Rev. B 99 134520 [25] Yin J X, Wu X X, Li J, Wu Z, Wang J H, Ting C S, Hor P H, Liang X J, Zhang C L, Dai P C, Wang X C, Jin C Q, Chen G F, Hu J P, Wang Z Q, Li A, Ding H and Pan S H 2020 Phys. Rev. B 102 054515 [26] Hu Q X, Yang F Z, Wang X Y, Li J J, Liu W Y, Kong L Y, Li S L, Yan L, Xu J P and Ding H 2023 Phys. Rev. Mater. 7 034801 [27] Zhang H, Dai J, Zhang Y J, Qu D R, Ji H W, Wu G, Wang X F, Chen X H, Wang B, Zeng C G, Yang J L and Hou J G 2010 Phys. Rev. B 81 104520 [28] Wu D S, Hong W S, Dong C X, et al. 2020 Phys. Rev. B 101 224508 [29] Pyon S, Kobayashi Y, Takahashi A, LiWJ,Wang T, Mu G, Ichinose A, Kambara T, Yoshida A and Tamegai T 2020 Phys. Rev. Mater. 4 104801 [30] Wang Z C, He C, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856 [31] Chen X Y, Duan W, Fan X W, Hong W S, Chen K L, Yang H, Li S L, Luo H Q and Wen H H 2021 Phys. Rev. Lett. 126 257002 [32] Hou Z Y, Chen K L, HongWS,Wang D, DuanW, Yang H, Li S L, Luo H Q, Wang Q H, Xiang T and Wen H H 2025 Phys. Rev. X 15 011027 [33] Hong WS, Song L X, Liu B, Li Z Z, Zeng Z Y, Li Y, Wu D S, Sui Q T, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J P, Zhao L, Zhou X J, Qiu X G, Li S L and Luo H Q 2020 Phys. Rev. Lett. 125 117002 [34] Wang Z C, Liu Y, Wu S Q, Shao Y T, Ren Z and Cao G H 2019 Phys. Rev. B 99 144501 [35] Fang D L, Shi X, Du Z Y, Richard P, Yang H, Wu X X, Zhang P, Qian T, Ding X X, Wang Z Y, Kim T K, Hoesch M, Wang A F, Chen X H, Hu J P, Ding H and Wen H H 2015 Phys. Rev. B 92 144513 [36] Wang T, Chu J N, Jin H, Feng J X, Wang L L, Song Y K, Zhang C, Xu X G, Li W, Li Z J, Hu T, Jiang D, Peng W, Liu X S and Mu G 2019 J. Phys. Chem. C 123 13925 [37] Duan W, Chen K L, Hong W S, Chen X Y, Li S L, Luo H Q, Yang H and Wen H H 2022 Nano Lett. 22 9450 [38] Li P, Liao S,Wang Z C, Li H X, Su SW, Zhang J K, Chen Z Y, Jiang Z C, Liu Z T, Yang L X, Huai L W, He J F, Cui S T, Sun Z, Yan Y J, Cao G H, Shen D W, Jiang J and Feng D L 2024 Nat. Commun. 15 6433 [39] Liu X, Tao R, Ren M Q, Chen W, Yao Q, Wolf T, Yan Y J, Zhang T and Feng D L 2019 Nat. Commun. 10 1039 [40] De’Medici L, Giovannetti G and Capone M 2014 Phys. Rev. Lett. 112 177001 [41] Li J, Zhao D, Wu Y P, Li S J, Song D W, Zheng L X, Wang N Z, Luo X G, Sun Z, Wu T and Chen X H 2016 arxiv.org/abs/1611.04694 [42] Li G, Liang L, Li Q, Pan M, Nascimento V B, He X, Karki A B, Meunier V, Jin R, Zhang J and Plummer E W 2014 Phys. Rev. Lett 112 077205 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|