|
Special Issue:
SPECIAL TOPIC — Recent progress on kagome metals and superconductors
|
| SPECIAL TOPIC — Recent progress on kagome metals and superconductors |
Prev
Next
|
|
|
Nontrivial Fermi surface topology in kagome superconductor CsTi3Bi5 revealed by de Haas-van Alphen oscillation |
| Yuhang Zhang(张宇航)1,2,†,‡, Xinwei Yi(易鑫伟)2,†, Zhen Zhao(赵振)1,2,†, Jiali Liu(刘家利)1,2, Aini Xu(胥艾妮)1,2, Dong Li(李栋)6, Zouyouwei Lu(鲁邹有为)1,2, Yue Liu(刘樾)1,2, Jihu Lu(卢佶虎)1,2, Hua Zhang(张华)1,2, Hui Chen(陈辉)1,2,4, Shiliang Li(李世亮)1,2,3, Ziyi Liu(刘子儀)1, Jinguang Cheng(程金光)1,2, Gang Su(苏刚)2,5,7,§, Haitao Yang(杨海涛)1,2,4,¶, Xiaoli Dong(董晓莉)1,2,3,#, Hong-Jun Gao(高鸿钧)1,2,4, and Zhongxian Zhao(赵忠贤)1,2,3 |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China; 4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 5 Kavli Institute for Theoretical Sciences, CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 6 RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan; 7 CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
|
|
Abstract The kagome lattice, naturally encompassing Dirac fermions, flat bands, and van Hove singularities, tends to intertwine exotic electronic states. Revealing the characteristics of its Fermi surface will help clarify the nature of the complex quantum phenomena in kagome material. Here we report the Fermi surface properties of the novel kagome metal CsTi$_{{3}}$Bi$_{{5}}$ by the de Haas-van Alphen oscillations. The observed oscillations are clear and consist of six principal frequencies ranging from 214 T to 1013 T. The angular dependence of the frequency implies a quasi-two-dimensional electronic structure. In addition, the geometry phase corresponding to 281 T, determined by direct Lifshitz-Kosevich formula fitting, yields a value close to $\pi $, which may indicate a band structure with nontrivial topological property. These results underscore the potential of CsTi$_{{3}}$Bi$_{{5}}$ as a promising platform to explore the interplay between topological order, electronic nematicity, and superconductivity.
|
Received: 22 January 2025
Revised: 29 March 2025
Accepted manuscript online: 02 April 2025
|
|
PACS:
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
| |
74.70.-b
|
(Superconducting materials other than cuprates)
|
| |
74.25.-q
|
(Properties of superconductors)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403903, 2023YFA1406100, 2018YFA0305800, and 2022YFA1204100), the National Natural Science Foundation of China (Grant Nos. 12304075, 11834014, 61888102, and 12447101), Chinese Academy of Sciences (Grant Nos. XDB33010200 and 2022YSBR-048), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000), and the National Science and Technology Major Project (Grant No. 2024ZD0300500). |
Corresponding Authors:
Yuhang Zhang, Gang Su, Haitao Yang, Xiaoli Dong
E-mail: yuhang@iphy.ac.cn;gsu@ucas.ac.cn;htyang@iphy.ac.cn;dong@iphy.ac.cn
|
Cite this article:
Yuhang Zhang(张宇航), Xinwei Yi(易鑫伟), Zhen Zhao(赵振), Jiali Liu(刘家利), Aini Xu(胥艾妮), Dong Li(李栋), Zouyouwei Lu(鲁邹有为), Yue Liu(刘樾), Jihu Lu(卢佶虎), Hua Zhang(张华), Hui Chen(陈辉), Shiliang Li(李世亮), Ziyi Liu(刘子儀), Jinguang Cheng(程金光), Gang Su(苏刚), Haitao Yang(杨海涛), Xiaoli Dong(董晓莉), Hong-Jun Gao(高鸿钧), and Zhongxian Zhao(赵忠贤) Nontrivial Fermi surface topology in kagome superconductor CsTi3Bi5 revealed by de Haas-van Alphen oscillation 2025 Chin. Phys. B 34 077107
|
[1] Syozi I 1951 Prog. Theor. Phys. 6 306 [2] Anderson P W 1973 Mater. Res. Bull. 8 153 [3] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R and Senthil T 2020 Science 367 263 [4] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [5] Ortiz B R, Gomes L C, Morey J R,Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407 [6] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [7] Chen H, Yang H T, Hu B,et al. 2021 Nature 599 222 [8] Jiang Y X, Yin J X, Denner M M,et al. 2021 Nat. Mater. 20 1353 [9] Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X 11 031026 [10] Wang Z, Ma S, Zhang Y, Yang H, Zhao Z, Ou Y, Zhu Y, Ni S, Lu Z, Chen H, Jiang K, Yu L, Zhang Y, Dong X, Hu J, Gao H J, Zhao Z and Zhao Z 2021 arXiv 2104.05556 [11] Ni S L, Ma S, Zhang Y H, et al. 2021 Chin. Phys. Lett. 38 057403 [12] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801 [13] Xu H S, Yan Y J, Yin R T, Xia W, Fang S J, Chen Z Y, Li Y J, Yang W Q, Guo Y F and Feng D L 2021 Phys. Rev. Lett. 127 187004 [14] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403 [15] Yang S Y, Wang Y J, Ortiz B R, Liu D F, Gayles J, Derunova E, Gonzalez-Hernandez R, Smejkal L, Chen Y L, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003 [16] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103 [17] Yu L, Wang C, Zhang Y, et al. 2021 arXiv 2107.10714 [18] Mielke C, Das D, Yin J X, et al. 2022 Nature 602 245 [19] Nie L P, Sun K, Ma W R, et al. 2022 Nature 604 59 [20] Wulferding D, Lee S, Choi Y, Yin Q, Tu Z, Gong C, Lei H, Yousuf S, Song J, Lee H, Park T and Choi K Y 2022 Phys. Rev. Res. 4 023215 [21] Xiang Y, Li Q, Li Y K, Xie W, Yang H, Wang Z W, Yao Y G and Wen H H 2021 Nat. Commun. 12 6727 [22] Yi X W, Ma X Y, Zhang Z, Liao Z W, You J Y and Su G 2022 Phys. Rev. B 106 L220505 [23] Yang H, Ye Y, Zhao Z, et al. 2024 Nat. Commun. 15 9626 [24] Werhahn D, Ortiz B R, Hay A K, Wilson S D, Seshadri R and Johrendt D 2022 Z. Naturforsch. B 77 757 [25] Wang Y, Liu Y, Hao Z, et al. 2023 Chin. Phys. Lett. 40 049901 [26] Chen X, Liu X, Xia W, Mi X, Zhong L, Yang K, Zhang L, Gan Y, Liu Y, Wang G, Wang A, Chai Y, Shen J, Yang X, Guo Y and He M 2023 Phys. Rev. B 107 174510 [27] Liu B, Kuang M Q, Luo Y, et al. 2023 Phys. Rev. Lett. 131 026701 [28] Yang J, Yi X, Zhao Z, et al. 2023 Nat. Commun. 14 4089 [29] Wang Y, Liu Y, Hao Z, et al. 2023 Chin. Phys. Lett. 40 037102 [30] Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Seshadri R and Wilson S D 2021 Phys. Rev. X 11 041030 [31] Broyles C, Graf D, Yang H T, Dong X L, Gao H J and Ran S 2022 Phys. Rev. Lett. 129 157001 [32] Shrestha K, Chapai R, Pokharel B K, Miertschin D, Nguyen T, Zhou X, Chung D Y, Kanatzidis M G, Mitchell J F,Welp U, Popović D, Graf D E, Lorenz B and Kwok W K 2022 Phys. Rev. B 105 024508 [33] ZhangW,Wang L, Tsang CW, Liu X, Xie J, YuWC, Lai K T and Goh S K 2022 Phys. Rev. B 106 195103 [34] Fu Y, Zhao N N, Chen Z, Yin Q W, Tu Z J, Gong C S, Xi C Y, Zhu X D, Sun Y P, Liu K and Lei H C 2021 Phys. Rev. Lett. 127 207002 [35] Chapai R, Leroux M, Oliviero V, Vignolles D, Bruyant N, Smylie M P, Chung D Y, Kanatzidis M G, Kwok W K, Mitchell J F and Welp U 2023 Phys. Rev. Lett. 130 126401 [36] Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge Univ. Press) [37] Alexandradinata A, Wang C, Duan W H and Glazman L 2018 Phys. Rev. X 8 011027 [38] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [39] Narayanan A, Watson M D, Blake S F, Bruyant N, Drigo L, Chen Y L, Prabhakaran D, Yan B, Felser C, Kong T, Canfield P C and Coldea A I 2015 Phys. Rev. Lett. 114 117201 [40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [41] Blöchl P E 1994 Phys. Rev. B 50 17953 [42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [43] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [44] Rourke P M C and Julian S R 2012 Comput. Phys. Commun. 183 324 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|