|
Special Issue:
SPECIAL TOPIC — Recent progress on kagome metals and superconductors
|
| SPECIAL TOPIC — Recent progress on kagome metals and superconductors |
Prev
Next
|
|
|
Observation of a long-range unidirectional charge density wave in kagome superconductor KV3Sb5 |
| Xingwei Shi(石兴伟)1,2,†, Xiao Liu(刘潇)1,2,†, Geng Li(李更)1,2,3,‡, Zhen Zhao(赵振)1,2, Haitao Yang(杨海涛)1,2,3, Xiao Lin(林晓)2,§, and Hong-Jun Gao(高鸿钧)1,2,3 |
1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 2 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Hefei National Laboratory, Hefei 230088, China |
|
|
|
|
Abstract The interplay between 2$a_{0}\times2a_{0}$ charge density wave (CDW), nematicity and superconductivity in $A$V$_{3}$Sb$_{5}$ ($A = {\rm K}$, Rb, Cs) compounds gives rise to a rich landscape of intriguing physical phenomena. In addition to the 2$a_{0}\times2a_{0}$ CDW, a unidirectional 4$a_{0}$ stripe CDW is also observed on the Sb surface of RbV$_{3}$Sb$_{5}$ and CsV$_{3}$Sb$_{5}$. However, reports of stripe-like CDWs in KV$_{3}$Sb$_{5}$ have been limited. Here, we report the first observation of a long-range unidirectional stripe order with a $6a_{0}$ modulation period on the Sb surface of KV$_{3}$Sb$_{5}$, coexisting with the $2a_{0} \times 2a_{0}$ CDW. Notably, the intensity of the $6a_{0}$ stripes in STM topographies exhibits pronounced contrast reversal between opposite bias voltages. Additionally, the wave vector of the $6a_{0}$ modulation shows no energy-dependent dispersion, confirming its CDW origin. Furthermore, the $6a_{0}$ CDW is robust under a 7 T out-of-plane magnetic field and persists over a temperature range from 215 mK to 720 mK. These results provide compelling evidence for the emergence of a long-range unidirectional CDW in KV$_{3}$Sb$_{5}$.
|
Received: 14 April 2025
Revised: 08 May 2025
Accepted manuscript online: 13 May 2025
|
|
PACS:
|
71.45.Lr
|
(Charge-density-wave systems)
|
| |
74.55.+v
|
(Tunneling phenomena: single particle tunneling and STM)
|
| |
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
| Fund: Project supported by the National Key Research and Development Project of China (Grant Nos. 2024YFA1207700 and 2022YFA1204100), the National Natural Science Foundation of China (Grant No. 62488201), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003), the Youth Innovation Promotion Association (Grant No. 2023005), and the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700). |
Corresponding Authors:
Geng Li, Xiao Lin
E-mail: gengli.iop@iphy.ac.cn;xlin@ucas.ac.cn
|
Cite this article:
Xingwei Shi(石兴伟), Xiao Liu(刘潇), Geng Li(李更), Zhen Zhao(赵振), Haitao Yang(杨海涛), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧) Observation of a long-range unidirectional charge density wave in kagome superconductor KV3Sb5 2025 Chin. Phys. B 34 077101
|
[1] Kiesel M L and Thomale R 2012 Phys. Rev. B 86 121105 [2] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135 [3] Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004 [4] Riberolles S X M, Slade T J, Han T, Li B, Abernathy D L, Canfield P C, Ueland B G, Orth P P, Ke L and McQueeney R J 2024 Nat. Commun. 15 1592 [5] Liu Z, Li M, Wang Q, Wang G, Wen C, Jiang K, Lu X, Yan S, Huang Y, Shen D, Yin J X, Wang Z, Yin Z, Lei H and Wang S 2020 Nat. Commun. 11 4002 [6] Zhang T, Yilmaz T, Vescovo E, Li H X, Moore R G, Lee H N, Miao H, Murakami S and McGuire M A 2022 npj Comput. Mater. 8 1 [7] Shi M, Yu F, Yang Y, Meng F, Lei B, Luo Y, Sun Z, He J, Wang R, Jiang Z, Liu Z, Shen D, Wu T, Wang Z, Xiang Z, Ying J and Chen X 2022 Nat. Commun. 13 2773 [8] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405 [9] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 [10] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [11] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 [12] Wu L, Hu Y, Fan D, Wang D and Wan X 2023 Chin. Phys. Lett. 40 117103 [13] Teng X, Oh J S, Tan H, Chen L, Huang J, Gao B, Yin J X, Chu J H, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Granroth G E, Yan B, Birgeneau R J, Dai P and Yi M 2023 Nat. Phys. 19 814 [14] Ortiz B R, Gomes L C, Morey J R,Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407 [15] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [16] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353 [17] Shumiya N, Hossain Md S, Yin J X, Jiang Y X, Ortiz B R, Liu H, Shi Y, Yin Q, Lei H, Zhang S S, Chang G, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Wilson S D and Hasan M Z 2021 Phys. Rev. B 104 35131 [18] Luo J, Zhao Z, Zhou Y Z, Yang J, Fang A F, Yang H T, Gao H J, Zhou R and Zheng G Q 2022 npj Quantum Mater. 7 1 [19] Li H, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J and Miao H 2021 Phys. Rev. X 11 031050 [20] Li H, Zhao H, Ortiz B R, Park T, Ye M, Balents L, Wang Z, Wilson S D and Zeljkovic I 2022 Nat. Phys. 18 265 [21] Li H, Fabbris G, Said A H, Sun J P, Jiang Y X, Yin J X, Pai Y Y, Yoon S, Lupini A R, Nelson C S, Yin Q W, Gong C S, Tu Z J, Lei H C, Cheng J G, Hasan M Z, Wang Z, Yan B, Thomale R, Lee H N and Miao H 2022 Nat. Commun. 13 6348 [22] Zhao H, Li H, Ortiz B R, Teicher SML, Park T, Ye M,Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216 [23] Hu B, Ye Y, Huang Z, Han X, Zhao Z, Yang H, Chen H and Gao H J 2022 Chin. Phys. B 31 058102 [24] Wang Z, Jiang Y X, Yin J X, Li Y, Wang G Y, Huang H L, Shao S, Liu J, Zhu P, Shumiya N, Hossain M S, Liu H, Shi Y, Duan J, Li X, Chang G, Dai P, Ye Z, Xu G, Wang Y, Zheng H, Jia J, Hasan M Z and Yao Y 2021 Phys. Rev. B 104 75148 [25] Wu P, Tu Y,Wang Z, Yu S, Li H, MaW, Liang Z, Zhang Y, Zhang X, Li Z, Yang Y, Qiao Z, Ying J, Wu T, Shan L, Xiang Z, Wang Z and Chen X 2023 Nat. Phys. 19 1143 [26] Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature 604 59 [27] Xu Y, Ni Z, Liu Y, Ortiz B R, Deng Q, Wilson S D, Yan B, Balents L and Wu L 2022 Nat. Phys. 18 1470 [28] Fukushima K, Obata K, Yamane S, Hu Y, Li Y, Yao Y,Wang Z, Maeno Y and Yonezawa S 2024 Nat. Commun. 15 2888 [29] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222 [30] Deng H, Qin H, Liu G, Yang T, Fu R, Zhang Z, Wu X, Wang Z, Shi Y, Liu J, Liu H, Yan X Y, Song W, Xu X, Zhao Y, Yi M, Xu G, Hohmann H, Holbæk S C, Dürrnagel M, Zhou S, Chang G, Yao Y, Wang Q, Guguchia Z, Neupert T, Thomale R, Fischer M H and Yin J X 2024 Nature 632 775 [31] Yan X Y, Deng H, Yang T, Liu G, SongW, Miao H, Tu Z, Lei H,Wang S, Lin B C, Qin H and Yin J X 2024 Chin. Phys. Lett. 41 97401 [32] Li H, Oh D, Kang M, Zhao H, Ortiz B R, Oey Y, Fang S, Ren Z, Jozwiak C, Bostwick A, Rotenberg E, Checkelsky J G,Wang Z,Wilson S D, Comin R and Zeljkovic I 2023 Phys. Rev. X 13 031030 [33] Li H, Zhao H, Ortiz B R, Oey Y, Wang Z, Wilson S D and Zeljkovic I 2023 Nat. Phys. 19 637 [34] Xiao Q, Lin Y, Li Q, Zheng X, Francoual S, Plueckthun C, Xia W, Qiu Q, Zhang S, Guo Y, Feng J and Peng Y 2023 Phys. Rev. Res. 5 L012032 [35] Arguello C J, Chockalingam S P, Rosenthal E P, Zhao L, Gutiérrez C, Kang J H, Chung W C, Fernandes R M, Jia S, Millis A J, Cava R J and Pasupathy A N 2014 Phys. Rev. B 89 235115 [36] Fang A, Ru N, Fisher I R and Kapitulnik A 2007 Phys. Rev. Lett. 99 46401 [37] Tan H, Liu Y, Wang Z and Yan B 2021 Phys. Rev. Lett. 127 46401 [38] Zheng L, Wu Z, Yang Y, Nie L, Shan M, Sun K, Song D, Yu F, Li J, Zhao D, Li S, Kang B, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature 611 682 [39] Soumyanarayanan A, Yee M M, He Y, van Wezel J, Rahn D J, Rossnagel K, Hudson EW, Norman M R and Hoffman J E 2013 Proc. Natl. Acad. Sci. USA 110 1623 [40] Gao S, Flicker F, Sankar R, Zhao H, Ren Z, Rachmilowitz B, Balachandar S, Chou F, Burch K S, Wang Z, van Wezel J and Zeljkovic I 2018 Proc. Natl. Acad. Sci. USA 115 6986 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|