Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097404    DOI: 10.1088/1674-1056/adda09
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A semiconductor-like in-plane junction between overdoped and optimally doped La2-xCexCuO4

Mohsin Rafique(莫辛 拉菲克)1, Rui Wu(吴蕊)1,†, Zefeng Lin(林泽丰)2,3, Kui Jin(金魁)2,3, Qi-Kun Xue(薛其坤)1,4,5,6, and Ding Zhang(张定)1,4,5,7,8
1 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;
5 Frontier Science Center for Quantum Information, Beijing 100084, China;
6 Southern University of Science and Technology, Shenzhen 518055, China;
7 RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan;
8 Hefei National Laboratory, Hefei 230028, China
Abstract  The electron-doped cuprate superconductor exhibits a unique electronic structure, where both electron and hole Fermi surface (FS) pockets coexist in the optimally doped (OP) region, while in the overdoped (OD) region there exists only a large hole FS pocket. It is therefore an intriguing question whether or not a p-n junction arises if the OD electron-doped cuprate interfaces with the OP compound. Here, we construct such an in-plane junction by selectively modulating the doping levels in thin films of ${\mathrm{La}}_{2-x}{\mathrm{Ce}}_{x}\mathrm{Cu}\mathrm{O}_{\mathrm{4}}$ (LCCO) — a typical electron-doped cuprate. We find that the junction exhibits non-linear, asymmetric $I$-$V$ characteristics, which are consistent with those of a p-n semiconductor junction, across a wide temperature range from 250 K to 10 K, regardless of the Hall coefficient sign change or the superconducting transition. We attribute these features to a potential barrier formed at the junction, which is set by the band bending in both OD and OP LCCO.
Keywords:  electron-doped cuprate superconductor      ionic liquid gating      junction      transport measurement  
Received:  11 March 2025      Revised:  30 April 2025      Accepted manuscript online:  19 May 2025
PACS:  74.25.F- (Transport properties)  
  74.72.Ek (Electron-doped)  
  73.40.-c (Electronic transport in interface structures)  
Fund: The authors thank valuable discussion with Shusen Ye and Yang Feng. Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403100), the National Natural Science Foundation of China (Grant Nos. 52388201, 12361141820, and 12274249), and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302400).
Corresponding Authors:  Rui Wu     E-mail:  wu_rui@baqis.ac.cn

Cite this article: 

Mohsin Rafique(莫辛 拉菲克), Rui Wu(吴蕊), Zefeng Lin(林泽丰), Kui Jin(金魁), Qi-Kun Xue(薛其坤), and Ding Zhang(张定) A semiconductor-like in-plane junction between overdoped and optimally doped La2-xCexCuO4 2025 Chin. Phys. B 34 097404

[1] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[2] Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P and Eremets M 2021 Nat. Rev. Phys. 3 462
[3] Yazdani A, da Silva Neto E H and Aynajian P 2016 Annu. Rev. Condens. Matter Phys. 7 11
[4] Proust C and Taillefer L 2019 Annu. Rev. Condens. Matter Phys. 10 409
[5] Fan J Q, Yu X Q, Cheng F J, Wang H, Wang R, Ma X, Hu X P, Zhang D, Ma X C, Xue Q K and Song C L 2022 Natl. Sci. Rev. 9 nwab225
[6] Hu S, Qiao H, Gu G, Xue Q K and Zhang D 2024 Nat. Commun. 15 4818
[7] Jiang K and Hu J 2022 Nat. Phys. 18 1145
[8] Zhu Y, Wang H, Wang Z, Hu S, Gu G, Zhu J, Zhang D and Xue Q K 2023 Phys. Rev. B 108 174508
[9] Ghosh S, Patil V, Basu A, Kuldeep, Dutta A, Jangade D A, Kulkarni R, Thamizhavel A, Steiner J F, von Oppen F and Deshmukh M M 2024 Nat. Mater. 23 612
[10] Zhao S Y F, Cui X, Volkov P A, Yoo H, Lee S, Gardener J A, Akey A J, Engelke R, Ronen Y, Zhong R, Gu G, Plugge S, Tummuru T, Kim M, Franz M, Pixley J H, Poccia N and Kim P 2023 Science 382 1422
[11] Ando F, Miyasaka Y, Li T, Ishizuka J, Arakawa T, Shiota Y, Moriyama T, Yanase Y and Ono T 2020 Nature 584 373
[12] Qi S, Ge J, Ji C, Ai Y, Ma G, Wang Z, Cui Z, Liu Y, Wang Z and Wang J 2025 Nat. Commun. 16 531
[13] Armitage N P, Fournier P and Greene R L 2010 Rev. Mod. Phys. 82 2421
[14] Matsui H, Takahashi T, Sato T, Terashima K, Ding H, Uefuji T and Yamada K 2007 Phys. Rev. B 75 224514
[15] Jiang W, Mao S N, Xi X X, Jiang X, Peng J L, Venkatesan T, Lobb C J and Greene R L 1994 Phys. Rev. Lett. 73 1291
[16] Armitage N P, Ronning F, Lu D H, Kim C, Damascelli A, Shen K M, Feng D L, Eisaki H, Shen Z X, Mang P K, Kaneko N, Greven M, Onose Y, Taguchi Y and Tokura Y 2002 Phys. Rev. Lett. 88 257001
[17] Dagan Y, QazilbashMM, Hill C P, Kulkarni V N and Greene R L 2004 Phys. Rev. Lett. 92 167001
[18] Li P, Balakirev F F and Greene R L 2007 Phys. Rev. Lett. 99 047003
[19] Jin K, Hu W, Zhu B, Kim D, Yuan J, Sun Y, Xiang T, Fuhrer M S, Takeuchi I and Greene R L 2016 Sci. Rep. 6 26642
[20] Jin K, Zhu B Y, Yuan J, Wu H, Zhao L, Wu B X, Han Y, Xu B, Cao L X, Qiu X G and Zhao B R 2007 Phys. Rev. B 75 214501
[21] Jin K, Zhu B Y, Wu B X, Gao L J and Zhao B R 2008 Phys. Rev. B 78 174521
[22] Rafique M, Feng Z, Lin Z, Wei X, Liao M, Zhang D, Jin K and Xue Q K 2019 Nano Lett. 19 7775
[23] Zhang D, Ishizuka H, Lu N, Wang Y, Nagaosa N, Yu P and Xue Q K 2018 Phys. Rev. B 97 184433
[24] Matsuoka H, Nakano M, Uchida M, Kawasaki M and Iwasa Y 2018 Phys. Rev. B 98 144506
[25] Jiang X, Qin M, Wei X, Xu L, Ke J, Zhu H, Zhang R, Zhao Z, Liang Q, Wei Z, Lin Z, Feng Z, Chen F, Xiong P, Yuan J, Zhu B, Li Y, Xi C, Wang Z, Yang M, Wang J, Xiang T, Hu J, Jiang K, Chen Q, Jin K and Zhao Z 2023 Nat. Phys. 19 365
[26] Sarkar T, Mandal P R, Higgins J S, Zhao Y, Yu H, Jin K and Greene R L 2017 Phys. Rev. B 96 155449
[27] Jin K, Butch N P, Kirshenbaum K, Paglione J and Greene R L 2011 Nature 476 73
[28] Yuan J, Chen Q, Jiang K, Feng Z, Lin Z, Yu H, He G, Zhang J, Jiang X, Zhang X, Shi Y, Zhang Y, Qin M, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J, Takeuchi I, Jin K and Zhao Z 2022 Nature 602 431
[29] Kusko C, Markiewicz R S, Lindroos M and Bansil A 2002 Phys. Rev. B 66 140513
[30] Moritz B, Schmitt F, Meevasana W, Johnston S, Motoyama E M, Greven M, Lu D H, Kim C, Scalettar R T, Shen Z X and Devereaux T P 2009 New J. Phys. 11 093020
[31] Tanmoy Das, Markiewicz R S and Bansil A 2010 Phys. Rev. B 81 184515
[32] CédricWeber, Kristjan Haule and Gabriel Kotliar 2010 Phys. Rev. B 82 125107
[33] Harima N, Matsuno J and Fujimori A 2001 Phys. Rev. B 64 220507
[1] Effect of side group on mechanically induced conductance switching in 4,40-dipyridyl-based single-molecule junctions
Zhen Wan(万振), Chang-Feng Zheng(郑长风), Lin Liu(刘琳), Yun-Long Ge(葛云龙), Guang-Ping Zhang(张广平), Shuai Qiu(邱帅), Hui Wang(王辉), and Zong-Liang Li(李宗良). Chin. Phys. B, 2025, 34(8): 087202.
[2] Self-powered broadband photodetector based on pyramid-structured Si/TiO2 heterojunction
Leyao Wu(吴乐瑶), Xinnan Shi(师馨楠), Haibo Fan(范海波), Qiujie Li(李秋洁), Peng Hu(胡鹏), and Feng Teng(滕凤). Chin. Phys. B, 2025, 34(8): 088501.
[3] Interfacial design and thermoelectric properties of C3N4-C20 molecular junctions based on quantum interference
Shutao Hu(胡澍涛), Meng Qian(钱萌), Gang Zhang(张刚), and Bei Zhang(张蓓). Chin. Phys. B, 2025, 34(6): 068903.
[4] Amorphous IGMO/IGZO heterojunction thin-film transistors with enhanced ultraviolet detection performance
Jichun Yao(姚继春), Yiyu Zhang(张怡宇), and Xingzhao Liu(刘兴钊). Chin. Phys. B, 2025, 34(5): 057104.
[5] Band alignment of heterojunctions formed by PtSe2 with doped GaN
Zhuoyang Lv(吕卓阳), Guijuan Zhao(赵桂娟), Wanting Wei(魏婉婷), Xiurui Lv(吕秀睿), and Guipeng Liu(刘贵鹏). Chin. Phys. B, 2025, 34(4): 047304.
[6] Observation of Josephson effect in 23Na spinor Bose-Einstein condensates
Yong Qin(秦永), Xin Wang(王鑫), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2025, 34(3): 033701.
[7] Highly responsive photodetectors based on NiPS3/WS2 van der Waals type-II heterostructures
Zhiteng Li(李志腾), Yian Wang(王易安), Zhenming Qiu(邱振铭), Lin Wang(王琳), Xiaofeng Liu(刘小峰), Zhengwei Chen(陈政委), and Xiao Zhang(张晓). Chin. Phys. B, 2025, 34(2): 027201.
[8] Gate-tunable high-responsivity photodiode based on 2D ambipolar semiconductor
Wentao Yu(于文韬), Long Zhao(赵龙), Yanfei Gao(高延飞), Shiping Gao(高石平), Yuekun Yang(杨悦昆), Chen Pan(潘晨), Shi-Jun Liang(梁世军), and Bin Cheng(程斌). Chin. Phys. B, 2025, 34(1): 018502.
[9] Diamond-based electron emission: Structure, properties and mechanisms
Liang-Xue Gu(顾梁雪), Kai Yang(杨凯), Yan Teng(滕妍), Wei-Kang Zhao(赵伟康), Geng-You Zhao(赵耕右), Kang-Kang Fan(凡康康), Bo Feng(冯博), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Kun Tang(汤琨), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2024, 33(9): 098102.
[10] Half-integer Shapiro steps in MgB2 focused He ion beam Josephson junctions
Dali Yin(殷大利), Xinwei Cai(蔡欣炜), Tiequan Xu(徐铁权), Ruining Sun(孙瑞宁), Ying Han(韩颖), Yan Zhang(张焱), Yue Wang(王越), and Zizhao Gan(甘子钊). Chin. Phys. B, 2024, 33(8): 087404.
[11] Effect of the mixing of s-wave and chiral p-wave pairings on electrical shot noise properties of normal metal/superconductor tunnel junctions
Yu-Chen Hu(胡雨辰) and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2024, 33(7): 077202.
[12] Synchronization and firing mode transition of two neurons in a bilateral auditory system driven by a high-low frequency signal
Charles Omotomide Apata, Yi-Rui Tang(唐浥瑞), Yi-Fan Zhou(周祎凡), Long Jiang(蒋龙), and Qi-Ming Pei(裴启明). Chin. Phys. B, 2024, 33(5): 058704.
[13] Investigation of helicity-dependent photocurrent of surface states in (Bi0.7Sb0.3)2Te3 nanoplate
Qin Yu(喻钦), Jinling Yu(俞金玲), Yonghai Chen(陈涌海), Yunfeng Lai(赖云锋), Shuying Cheng(程树英), and Ke He(何珂). Chin. Phys. B, 2024, 33(5): 057101.
[14] Terahertz high-sensitivity SIS mixer based on Nb-AlN-NbN hybrid superconducting tunnel junctions
Bo-Liang Liu(刘博梁), Dong Liu(刘冬), Ming Yao(姚明), Jun-Da Jin(金骏达), Zheng Wang(王争), Jing Li(李婧), Sheng-Cai Shi(史生才), Artem Chekushkin, Michael Fominsky, Lyudmila Filippenko, and Valery Koshelets. Chin. Phys. B, 2024, 33(5): 058501.
[15] Co-doped BaFe2As2 Josephson junction fabricated with a focused helium ion beam
Ziwen Chen(陈紫雯), Yan Zhang(张焱), Ping Ma(马平), Zhongtang Xu(徐中堂), Yulong Li(李宇龙), Yue Wang(王越), Jianming Lu(路建明), Yanwei Ma(马衍伟), and Zizhao Gan(甘子钊). Chin. Phys. B, 2024, 33(4): 047405.
No Suggested Reading articles found!