CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Nonvolatile ferroelectric control of electronic properties of Bi2Te3 |
Xusheng Ding(丁旭升), Yunfei Li(李云飞), Chaoyang Kang(康朝阳), Ye-Heng Song(宋业恒)†, and Weifeng Zhang(张伟风)‡ |
Henan Key Laboratory of Quantum Materials and Quantum Energy, Center for Topological Functional Materials, School of Future Technology, Henan University, Kaifeng 475004, China |
|
|
Abstract Nonvolatile electric-field control of the unique physical characteristics of topological insulators (TIs) is essential for the fundamental research and development of practical electronic devices. Electrically tunable transport properties through gating materials have been extensively investigated. However, the relatively weak and volatile tunability limits its practical applications in spintronics. Here, we demonstrate the nonvolatile electric-field control of Bi$_{2}$Te$_{3}$ transport properties via constructing ferroelectric Rashba architectures, i.e., 2D Bi$_{2}$Te$_{3}/\alpha $-In$_{2}$Se$_{3}$ ferroelectric field-effect transistors. By switching the polarization states of $\alpha $-In$_{2}$Se$_{3}$, the Fermi level, resistance, Fermi wave vector, carrier mobility, carrier density and magnetoresistance (MR) of the Bi$_{2}$Te$_{3}$ film can be effectively modulated. Importantly, a shift of the Fermi level towards a band gap with a surface state occurs as switching to a negative polarization state, the contribution of the surface state to the conductivity then increases, thereby increasing the carrier mobility and electron coherence length significantly, resulting in the enhanced weak anti-localization (WAL) effect. These results provide a nonvolatile electric-field control method to tune the electronic properties of TI and can further extend to quantum transport properties.
|
Received: 08 May 2024
Revised: 31 August 2024
Accepted manuscript online: 03 September 2024
|
PACS:
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
72.15.Rn
|
(Localization effects (Anderson or weak localization))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004099 and 11974099), the Zhongyuan Leading Talents, Plan for Leading Talent of Fundamental Research of the Central China in 2020, and the Intelligence Introduction Plan of Henan Province in 2021 (Grant No. CXJD2021008). |
Corresponding Authors:
Ye-Heng Song, Weifeng Zhang
E-mail: yehengsong@henu.edu.cn;wfzhang@henu.edu.cn
|
Cite this article:
Xusheng Ding(丁旭升), Yunfei Li(李云飞), Chaoyang Kang(康朝阳), Ye-Heng Song(宋业恒), and Weifeng Zhang(张伟风) Nonvolatile ferroelectric control of electronic properties of Bi2Te3 2024 Chin. Phys. B 33 117301
|
[1] Moore J E 2010 Nature 464 7286 [2] Qi X L and Zhang S C 2010 Phys. Today 63 33 [3] Ngabonziza P, Stehno M P, Myoren H, Neumann V A, Koster G and Brinkman A 2016 Adv. Electron. Mater. 2 1600157 [4] He L, Xiu F, Wang Y, Fedorov A V, Huang G, Kou X, Lang M, Beyermann W P, Zou J and Wang K L 2011 J. Appl. Phys. 109 103702 [5] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N and Ralph D C 2014 Nature 511 7510 [6] Li C H, van ’t Erve O M, Li Y Y, Li L and Jonker B T 2016 Sci. Rep. 6 29533 [7] Zhang H B, Yu H L, Bao D H, Li S W, Wang C X and Yang G W 2012 Phys. Rev. B 86 075102 [8] Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659 [9] Liu Y, Li Y Y, Rajput S, Gilks D, Lari L, Galindo P L, Weinert M, Lazarov V K and Li L 2014 Nat. Phys. 10 294 [10] Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q and Lu L 2010 Phys. Rev. Lett. 105 176602 [11] Liu H and Ye P D 2011 Appl. Phys. Lett. 99 084104 [12] Kong D, Dang W, Cha J J, Li H, Meister S, Peng H, Liu Z and Cui Y 2010 Nano Lett. 10 2245 [13] Steinberg H, Laloë J B, Fatemi V, Moodera J S and Jarillo-Herrero P P 2011 Phys. Rev. B 84 23 [14] Zhang G, Qin H, Chen J, He X, Lu L, Li Y and Wu K 2011 Adv. Funct. Mater. 21 2351 [15] Yan J M, Xu Z X, Chen T W, Xu M, Zhang C, Zhao X W, Liu F, Guo L, Yan S Y, Gao G Y, Wang F F, Zhang J X, Dong S N, Li X G, Luo H S, Zhao W and Zheng R K 2019 ACS Appl. Mater. Inter. 11 9548 [16] Zhu Q X, Yang M M, Zheng M, Zheng R K, Guo L J, Wang Y, Zhang J X, Li X M, Luo H S and Li X G 2015 Adv. Funct. Mater. 25 1111 [17] Yan M Y, Yan J M, Zhang M Y, Chen T W, Gao G Y, Wang F F, Chai Y and Zheng R K 2020 Appl. Phys. Lett. 117 23 [18] Xue F, Hu W, Lee K C, Lu L S, Zhang J, Tang H L, Han A, Hsu W T, Tu S, Chang W H, Lien C H, He J H, Zhang Z, Li L J and Zhang X 2018 Adv. Funct. Mater. 28 1803738 [19] Si M, Saha A K, Gao S, Qiu G, Qin J, Duan Y, Jian J, Niu C, Wang H, Wu W, Gupta S K and Ye P D 2019 Nat. Electron. 2 580 [20] Li Y, Chen C, Li W, Mao X, Liu H, Xiang J, Nie A, Liu Z, Zhu W and Zeng H 2020 Adv. Electron. Mater 6 2000061 [21] Si M, Zhang Z, Chang S C, Haratipour N, Zheng D, Li J, Avci U E and Ye P D 2021 ACS Nano 15 5689 [22] Wang K, Liu Y, Wang W, Meyer N, Bao L H and He L 2013 Appl. Phys. Lett. 103 031605 [23] Wan S, Li Y, Li W, Mao X, Zhu W and Zeng H 2018 Nanoscale 10 14885 [24] Lu H Z and Shen S Q 2014 Phys. Rev. Lett. 112 146601 [25] Brahlek M, Koirala N, Bansal N and Oh S 2015 Solid State Commun. 215 54 [26] Yan M Y, Li S S, Yan J M, Xie L, Xu M, Guo L and Zhang S J 2022 Phys. Rev. Appl. 18 044073 [27] Hikami S, Larkin A I and Nagaoka Y 1980 Progress of Theoretical Physics 63 707 [28] Malick S, Sarkar A B, Laha A, Anas M, Malik V K, Agarwal A, Hossain Z and Nayak J 2022 Phys. Rev. B 106 075105 [29] Laha A, Malick S, Singha R, Mandal P and Hossain Z 2019 Phys. Rev. B 99 241102 [30] Zhang J, Hou Z, Zhang C, Chen J and Zhang X 2019 Appl. Phys. Lett. 115 172407 [31] Malick S, Ghosh A, Barman C K, Alam A and Nayak J 2022 Phys. Rev. B 105 165105 [32] Chen Z, Yuan H, Zhang Y, Nomura K, Gao T, Gao Y, Shimotani H, Liu Z and Iwasa Y 2012 Nano Lett. 12 2212 [33] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2014 Nat. Mater. 14 280 [34] Shrestha K, Chou M, Graf D, Yang H D, Lorenz B and Chu C W 2017 Phys. Rev. B 95 195113 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|