High-performance KNN-based piezoelectric ceramics for buzzer application
Cheng Xiong(熊城)1, Bosen Li(李博森)1, Zhongxin Liao(廖忠新)2, Yan Qiu(邱䶮)2, and Daqiang Gao(高大强)1,†
1 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China; 2 The Audiowell Electronics (Guangdong) Co., Ltd., Guangzhou 511493, China
Abstract Piezoelectric ceramic materials are important components of piezoelectric buzzers, where the parameter of inverse piezoelectric coefficient () plays a decisive role in the performance of the buzzer. Here, we report the manufacture and performance of a lead-free ceramic-based (0.96(KNa)(NbSb)O-0.04(BiNa)ZrO-1 mol{\%} AlO, abbreviated as KNNS-BNZ-1 mol{\%} AlO) piezoelectric buzzer and compare it with commercial (PbZrTiO, abbreviated as PZT) ceramics. Briefly, KNN-based ceramics have a typical perovskite structure and piezoelectric properties of pC/N, and pm/V, compared to pC/N, and pm/V of the commercial PZT-4 ceramics. Our results show that the KNNS-BNZ-1 mol{\%} AlO ceramics have a similar sound pressure level performance over the testing frequency range to commercial PZT ceramics (which is even better in the 3-4 kHz range). These findings highlight the great application potential of KNN-based piezoelectric ceramics.
Fund: Project supported by the Key Research and Develop Projects in Gansu Province (Grant No. 23YFGA0002) and the project funding of Audiowell Electronics (Guangdong) Co., Ltd.
Cheng Xiong(熊城), Bosen Li(李博森), Zhongxin Liao(廖忠新), Yan Qiu(邱䶮), and Daqiang Gao(高大强) High-performance KNN-based piezoelectric ceramics for buzzer application 2025 Chin. Phys. B 34 047701
[1] Wu L, Zheng T and Wu J 2022 J. Eur. Ceram. Soc. 42 4888 [2] Quan Y, Ren W, Niu G, Wang L, Zhao J, Zhang N, Liu M, Ye Z G, Liu L and Karaki T 2018 ACS Applied Materials&Interfaces 10 10220 [3] Liu Y, Shen B, Fan J, Qi X, Sun E and Zhang R 2023 J. Eur. Ceram. Soc. 43 4044 [4] Lin J, Qian J, Ge G, Yang Y, Li J, Wu X, Li G, Wang S, Liu Y, Zhang J, Zhai J, Shi X and Wu H 2024 Nat. Commun. 15 2560 [5] Cai E and Liu Q 2022 J. Eur. Ceram. Soc. 42 4539 [6] Bell A J and Deubzer O 2018 MRS Bull. 43 581 [7] Xing J, Jiang L, Zhao C, Tan Z, Xu Q, Wu J, Chen Q, Xiao D and Zhu J 2020 Journal of Materiomics 6 513 [8] Zheng T, Wu J, Xiao D and Zhu J 2018 Prog. Mater. Sci. 98 552 [9] Wu Y, Cheng Y, Guan S, Wang X, Shi W, Xu H, Lang R, Xing J, Zhu J and Chen Q 2023 Inorganic Chemistry 62 15094 [10] Lv X, Zhu J, Xiao D, Zhang X X and Wu J 2020 Chem. Soc. Rev. 49 671 [11] Wu J, Xiao D and Zhu J 2015 Chem. Rev. 115 2559 [12] Zhang Y, Shen B, Zhai J and Zeng H 2016 J. Am. Ceram. Soc. 99 752 [13] Xi K, Li Y, Sun Y, Li C, Li Z, Vetri N, Zheng Z, Yang C, Wang D and Jia P 2023 J. Am. Ceram. Soc. 106 466 [14] Cen Z, Cao F, Feng M, Li Z, Xu Z, Luo G, Luo N, Xie K, Li L and Wang X 2022 J. Eur. Ceram. Soc. S0955221922008408 [15] Cheng Y, Xing J, Li X, Xie L, Xie Y, Tan Z and Zhu J 2022 J. Am. Ceram. Soc. 105 5213 [16] Li H, Xie L, Tan Z, Xing J, Li X, Chen H, Wang F, Cheng Y, Tang M and Zhu J 2022 Inorganic Chemistry 61 18660 [17] Pan Z, Chen J, Fan L, Zhang J, Zhang S, Huang Y, Liu L, Fang L and Xing X 2015 J. Am. Ceram. Soc. 98 3935 [18] Wang F, Zhang T, Guo M and Zhang M 2022 Ceram. Int. 48 19954 [19] Xu K, Li J, Lv X, Wu J, Zhang X, Xiao D and Zhu J 2016 Adv. Mater. 28 8519 [20] Zheng T, Zhang Y, Ke Q, Wu H, Heng L W, Xiao D, Zhu J, Pennycook S J, Yao K and Wu J 2020 Nano Energy 70 104559 [21] Huangfu G, Zeng K, Wang B, Wang J, Fu Z, Xu F, Zhang S, Luo H, Viehland D and Guo Y 2022 Science 378 1125 [22] Su H H, Hong C S, Tsai C C and Chu S Y 2018 Ceram. Int. 44 3787 [23] Guan Y, Sun Y, Wang J, Huangfu G, Li H, Zhang S and Guo Y 2023 ACS Applied Materials&Interfaces 15 51421 [24] Dong B, Xing F and Li Z 2007 Materials Science and Engineering:A 456 317 [25] Wang K and Li J F 2010 Adv. Funct. Mater. 20 1924 [26] Dani S S, Tripathy A, Alluri N R, Balasubramaniam S and Ramadoss A 2022 Materials Advances 3 8886 [27] Liu Y X, Thong H C, Cheng Y Y S, Li J W and Wang K 2021 J. Appl. Phys. 129 1 [28] Thong H C, Li Z, Lu J T, Li C B W, Liu Y X, Sun Q, Fu Z, Wei Y and Wang K 2022 Advanced Science 9 2200998 [29] Wang B, Huangfu G, Wang J, Li H and Guo Y 2023 Adv. Funct. Mater. 33 2306416 [30] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D and Li J F 2016 Adv. Funct. Mater. 26 1217 [31] Guan Z, Wang T, Zheng Y, Peng Y, Wei L, Zhang Y, Mattursun A, Huang J, Tong W Y, Han G, Chen B, Xiang P H, Duan C G and Zhong N 2024 Chin. Phys. B 33 067701 [32] Qiao L, Li G, Tao H, Wu J, Xu Z and Li F 2020 Ceram. Int. 46 5641 [33] Zhou S W and Rogers C A 1995 J. Intell. Mater. Syst. Struct. 6 372
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.