Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067505    DOI: 10.1088/1674-1056/adcaa4
RAPID COMMUNICATION Prev   Next  

Multiferroicity and thermal expansion of the layered metal-organic framework [NH4Cl]2[Ni(HCOO)2(NH3)2]

Dan Cheng(程丹), Yingjie He(何英杰), Shuang Liu(刘爽), Na Su(苏娜), and Young Sun(孙阳)†
Department of Applied Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
Abstract  We have investigated the magnetic, dielectric, pyroelectric, and thermal expansion properties of a layered perovskite metal-organic framework, [NH$_{4}$Cl]$_{2}$[Ni(HCOO)$_{2}$(NH$_{3}$)$_{2}$]. The material undergoes three phase transitions including a canted antiferromagnetic transition at $\sim 36 $ K, and two successive structural transitions around 100 K and 110 K, respectively. The temperature dependence of dielectric permittivity and pyroelectric current suggests that the structural transitions induce weak ferroelectricity along the $c$-axis and antiferroelectricity in the ab plane. A negative thermal expansion along the $c$-axis is observed between two structural phase transitions, which is ascribed to the abnormal shrinkage of interlayer hydrogen bonding length. Moreover, the ferroelectric/antiferroelectric phase transition temperature shifts towards a higher temperature under a magnetic field, suggesting certain magnetoelectric coupling in the paramagnetic phase. Our study suggests that the layered metal-organic frameworks provide a unique playground for exploring exotic physical properties such as multiferroicity and abnormal thermal expansion.
Keywords:  multiferroic      thermal expansion      metal-organic framework  
Received:  20 March 2025      Revised:  01 April 2025      Accepted manuscript online:  09 April 2025
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  81.07.Pr (Organic-inorganic hybrid nanostructures)  
  75.50.Ee (Antiferromagnetics)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1400303) and the National Natural Science Foundation of China (Grant No. 12227806).
Corresponding Authors:  Young Sun     E-mail:  youngsun@cqu.edu.cn

Cite this article: 

Dan Cheng(程丹), Yingjie He(何英杰), Shuang Liu(刘爽), Na Su(苏娜), and Young Sun(孙阳) Multiferroicity and thermal expansion of the layered metal-organic framework [NH4Cl]2[Ni(HCOO)2(NH3)2] 2025 Chin. Phys. B 34 067505

[1] Wang K F, Liu, J M and Ren Z F 2009 Adv. Phys. 58 321
[2] Vopson M M 2015 Crit. Rev. Solid State Mater. Sci. 40 223
[3] Spaldin N A and Ramesh R 2019 Nat. Mater. 18 203
[4] Wang C S, Ke X X, Wang J J, Liang R R, Luo Z L, Tian Y, Zhang Q T, Wang J, Han X F, Tendeloo G V, Chen L Q, Nan C W, Ramesh R and Zhang J X 2016 Nat. Commun. 7 10636
[5] Tian Y, Wei L Y, Zhang Q H, Huang H B, Zhang Y L, Zhou H, Ma F J, Gu L, Meng S, Chen L Q, Nan CWand Zhang J X 2018 Nat. Commun. 9 06369
[6] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[7] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
[8] Liu X L, Li D, Zhao H X, Dong X W, Long L S and Zheng L S 2021 Adv. Mater. 33 2004542
[9] Jain P, Ramachandran V, Clark R J, Zhou H D, Toby B H, Dalal N S, Kroto H W and Cheetham A K 2009 J. Am. Chem. Soc. 131 13625
[10] Tian Y, Stroppa A, Chai Y, Yan L, Wang S, Barone P, Picozzi S and Sun Y 2014 Sci. Rep. 4 6062
[11] Ma Y and Sun Y 2020 J. Appl. Phys. 127 080901
[12] Wang J, Xu X L and Li X 2023 Adv. Mater. Interfaces 10 2300123
[13] Saparov B and Mitzi D B 2016 Chem. Rev. 116 4558
[14] Espallargas G M and Coronado E 2018 Chem. Soc. Rev. 47 533
[15] Li B, Wen H, Cui Y, Zhou W, Qian G and Chen B 2016 Adv. Mater. 28 8819
[16] Ghoufi A 2023 Phys. Rev. Mater. 7 126001
[17] Gao H, Wang Z, Ma X, Zhang X, Li W and Zhao M 2019 Phys. Rev. Mater. 3 065206
[18] Rout P C and Srinivasan V 2018 Phys. Rev. Mater. 2 014407
[19] Su N, Ma Y, Liu S, Wu W, Luo J and Sun Y 2024 Phys. Rev. B 110 214443
[20] Liu Q, Yu J and Hu J 2024 Chin. Phys. B 33 017204
[21] Nakayama Y, Nishihara S, Inoue K, Suzuki T and Kurmoo M 2017 Ange. Chem. Inter. Edit. 129 9495
[22] Huang B,Wang P, ZhangWX and Chen X M 2022 Mater. Adv. 3 9103
[23] Mohanty P P, Ahuja R and Chakraborty S 2022 Nanotechnology 33 292501
[24] Liu X, Wu Z, Guan T, Jiang H, Long P, Li X, Ji C, Chen S, Sun Z and Luo J 2021 Nat. Commun. 12 5502
[25] Calder S, Baral R, Narayanan N and Sanjeewa L D 2023 Phys. Rev. Mater. 7 124408
[26] Chen S, Shang R, Wang B W, Wang Z M and Gao S 2018 APL Mater. 6 114205
[27] Ma Y, Wang Y, Cong J and Sun Y 2019 Phys. Rev. Lett. 122 255701
[28] Hummel F A 1951 J. Am. Ceram. Soc. 34 235
[29] Korthuis V, Khosrovani N, Sleight AW, Roberts N, Dupree R andWarren W W Jr 1995 Chem. Mater. 7 412
[30] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[31] Lind C 2012 Materials 5 1125
[32] Liang E, Sun Q, Yuan H, Wang J, Zeng G and Gao Q 2021 Fron. Phys. 16 53302
[33] Fang H, Wang Y, Shang S and Liu Z K 2015 Phys. Rev. B 91 024104
[34] Song Y, Shi N, Deng S, Xing X and Chen J 2021 Prog. Mater. Sci. 121 100835
[35] Arima H, Inui T, Yamashita A, Miura A, Itou H, Moriyoshi C, Fujihisa H and Mizuguchi Y 2023 J. Phys. Soc. Jpn. 92 024602
[36] Shi N, Song Y, Xing X and Chen J 2021 Coord. Chem. Rev. 449 214204
[37] Wu Y, Kobayashi A, Halder G J, Peterson V K, Chapman K W, Lock N, Southon P D and Kepert C J 2008 Ange. Chem. Inter. Edit. 47 8929
[38] Lock N,Wu Y, Christensen M, Cameron L J, Peterson V K, Bridgeman A J, Kepert C K and Iversen B B 2010 J. Phys. Chem. C 114 16181
[1] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[2] Pressure-promoted ligand to metal energy transfer for emission enhancement of [Tb2(BDC)3(DMF)2(H2O)2]n metal-organic framework
Yunfeng Yang(杨云峰), Kaiyan Yuan(袁开岩), Binhao Yang(杨斌豪), Qing Yang(杨青), Yixuan Wang(王艺璇), and Xinyi Yang(杨新一)§. Chin. Phys. B, 2025, 34(3): 036101.
[3] High-throughput screening and evaluation of double-linker metal-organic frameworks for CO2/H2 adsorption and separation
Ji-Long Huang(黄纪龙), Xiu-Ying Liu(刘秀英), Hao Chen(陈浩), Xiao-Dong Li(李晓东), and Jing-Xin Yu(于景新). Chin. Phys. B, 2025, 34(2): 027302.
[4] Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film
Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim. Chin. Phys. B, 2024, 33(9): 096805.
[5] Polarization pinning at antiphase boundaries in multiferroic YbFeO3
Guodong Ren, Pravan Omprakash, Xin Li, Yu Yun, Arashdeep S. Thind, Xiaoshan Xu, and Rohan Mishra. Chin. Phys. B, 2024, 33(11): 118502.
[6] Linear magnetoresistance and structural distortion in layered SrCu4-xP2 single crystals
Yong Nie(聂勇), Zheng Chen(陈正), Wensen Wei(韦文森), Huijie Li(李慧杰), Yong Zhang(张勇), Ming Mei(梅明), Yuanyuan Wang(王园园), Wenhai Song(宋文海), Dongsheng Song(宋东升), Zhaosheng Wang(王钊胜), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2024, 33(1): 016108.
[7] Photophysics of metal-organic frameworks: A brief overview
Qingshuo Liu(刘晴硕), Junhong Yu(余俊宏), and Jianbo Hu(胡建波). Chin. Phys. B, 2024, 33(1): 017204.
[8] Prediction of a monolayer spin-spiral semiconductor: CoO with a honeycomb lattice
Jie Zhang(张杰), Shunuo Song(宋姝诺), Yan-Fang Zhang(张艳芳),Yu-Yang Zhang(张余洋), Sokrates T. Pantelides, and Shixuan Du(杜世萱). Chin. Phys. B, 2023, 32(8): 087508.
[9] Multiferroic monolayers VOX (X = Cl, Br, I): Tunable ferromagnetism via charge doping and ferroelastic switching
Hong-Chao Yang(杨洪超), Peng-Cheng Liu(刘鹏程), Liu-Yu Mu(穆鎏羽), Ying-De Li(李英德), Kai Han(韩锴), and Xiao-Le Qiu(邱潇乐). Chin. Phys. B, 2023, 32(6): 067701.
[10] Thermal expansion behavior of sintered Nd-Fe-B magnets with different Co contents and orientations
Rui-Yang Meng(孟睿阳), Ji-Yuan Xu(徐吉元), Jia-Teng Zhang(张家滕), Jing Liu(刘静), Yi-Kun Fang(方以坤), Sheng-Zhi Dong(董生智), and Wei Li(李卫). Chin. Phys. B, 2023, 32(5): 056501.
[11] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[12] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[13] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[14] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagnetic properties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[15] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
No Suggested Reading articles found!