Special Issue:
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
|
TOPICAL REVIEW — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS |
Prev
Next
|
|
|
Atomic-level quantitative analysis of electronic functional materials by aberration-corrected STEM |
Wanbo Qu(曲万博)1, Zhihao Zhao(赵志昊)1, Yuxuan Yang(杨宇轩)1, Yang Zhang(张杨)1,2,3,†, Shengwu Guo(郭生武)1, Fei Li(李飞)1,2, Xiangdong Ding(丁向东)1, Jun Sun(孙军)1, and Haijun Wu(武海军)1,‡ |
1 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China; 2 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, and School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 3 Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope (AC-STEM) makes it an advanced and practical characterization technique for all materials. Owing to the prosperous advancement in computational technology, specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process. Utilizing advanced image processing algorithms promotes the rectification of image distortions, concurrently elevating the overall image quality to superior standards. Extracting high-resolution, pixel-level discrete information and converting it into atomic-scale, followed by performing statistical calculations on the physical matters of interest through quantitative analysis, represent an effective strategy to maximize the value of electron microscope images. The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers. This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives: contrast, lattice and strain, as well as atomic displacements and polarization. It further elaborates on practical applications of these methods in electronic functional materials, notably in piezoelectrics/ferroelectrics and thermoelectrics. It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research, elucidating the structure-property correlations in high-performance systems, and guiding synthesis strategies.
|
Received: 09 July 2024
Revised: 27 August 2024
Accepted manuscript online: 14 September 2024
|
PACS:
|
68.37.Ma
|
(Scanning transmission electron microscopy (STEM))
|
|
06.60.-c
|
(Laboratory procedures)
|
|
77.22.Ej
|
(Polarization and depolarization)
|
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
Fund: Project supported by the financial support from the National Key R&D Program of China (Grant No. 2021YFB3201100), the National Natural Science Foundation of China (Grant No. 52172128), and the Top Young Talents Programme of Xi’an Jiaotong University. |
Corresponding Authors:
Yang Zhang, Haijun Wu
E-mail: zhangyang2020@xjtu.edu.cn;wuhaijunnavy@xjtu.edu.cn
|
Cite this article:
Wanbo Qu(曲万博), Zhihao Zhao(赵志昊), Yuxuan Yang(杨宇轩), Yang Zhang(张杨), Shengwu Guo(郭生武), Fei Li(李飞), Xiangdong Ding(丁向东), Jun Sun(孙军), and Haijun Wu(武海军) Atomic-level quantitative analysis of electronic functional materials by aberration-corrected STEM 2024 Chin. Phys. B 33 116802
|
[1] Crewe A V, Wall J and Langmore J 1970 Science 168 1338 [2] Pennycook S J and Jesson D E 1991 Ultramicrosc 37 14 [3] Jones L, Yang H, Pennycook T J, Marshall M S J, Van Aert S, Browning N D, Castell M R and Nellist P D 2015 Adv. Struct. Chem. Imaging. 1 8 [4] Galindo P L, Kret S, Sanchez A M, Laval J Y, Yáñez A, Pizarro J, Guerrero E, Ben T and Molina S I 2007 Ultramicrosc 107 1186 [5] Bárcena-González G, Guerrero-Lebrero M P, Guerrero E, Yañez A, Fernández-Reyes D, González D and Galindo P L 2017 Ultramicrosc 182 283 [6] Jones L and Nellist P D 2013 Microsc. Microanal. 19 1050 [7] Jones L, Varambhia A, Beanland R, Kepaptsoglou D, Griffiths I, Ishizuka A, Azough F, Freer R, Ishizuka K, Cherns D, Ramasse Q M, Lozano-Perez S and Nellist P D 2018 Microscopy 67 98 [8] https://www.hremresearch.com/Eng/download/documents/PPA%20M anual%20v5.0.pdf [9] https://www.hremresearch.com/Eng/download/documents/SmartAlign %20Manual.pdf [10] He W K, Wang D Y, Wu H J, et al. 2019 Science 365 1418 [11] Qin B C, Wang D Y, He W K, Zhang Y, Wu H J, Pennycook S J and Zhao L D 2019 J. Am. Chem. Soc. 141 1141 [12] Li F, Cabral M J, Xu B, Cheng Z X, Dickey E C, LeBeau J M, Wang J L, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R and Zhang S J 2019 Science 364 264 [13] Qin H X, Qu W B, Zhang Y, Zhang Y S, Liu Z H, Zhang Q, Wu H J, Cai W and Sui J H 2022 Adv. Sci. 9 2200432 [14] Jia C L, Lentzen M and Urban K 2003 Science 299 870 [15] Jia C L, Lentzen M and Urban K 2004 Microsc. Microanal. 10 174 [16] Lazić I, Bosch E G T and Lazar S 2016 Ultramicrosc 160 265 [17] Lazić I and Bosch E G T 2017 Adv. Imaging Electron Phys. 199 75 [18] Jia C L and Urban K 2004 Science 303 2001 [19] Kumar A, Baker J N, Bowes P C, Cabral M J, Zhang S J, Dickey E C, Irving D L and LeBeau J M 2021 Nat. Mater. 20 62 [20] Wang D Y, Huang Z W, Zhang Y, Hao L J, Wang G T, Deng S H, Wang H L, Chen J, He L H, Xiao B, Xu Y D, Pennycook S J, Wu H J and Zhao L D 2020 Sci. China Mater. 63 1759 [21] Yin J, Shi X M, Tao H, Tan Z, Lv X, Ding X D, Sun J, Zhang Y, Zhang X M, Yao K, Zhu J G, Huang H B, Wu H J, Zhang S J and Wu J G 2022 Nat. Commun. 13 6333 [22] Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D and Pennycook S J 2015 Science 348 547 [23] Xiao Y, Liu W, Zhang Y, Wang D Y, Shi H N, Wang S N, Jin Y, Qu W B, Wu H J, Ding X D, Sun J and Zhao L D 2021 J. Mater. Chem. A 9 23011 [24] Wang H G, Jiang X J, Wang Y, Stark R W, van Aken P A, Mannhart J and Boschker H 2020 Nano Lett. 20 88 [25] Hÿtch M J, Snoeck E and Kilaas R 1998 Ultramicrosc 74 131 [26] Neaton J B, Ederer C, Waghmare U V, Spaldin N A and Rabe K M 2005 Phys. Rev. B 71 014113 [27] Chen S Q, Yuan S, Hou Z P, Tang Y L, Zhang J P, Wang T, Li K, Zhao W W, Liu X J, Chen L, Martin L W and Chen Z H 2020 Adv. Mater. 33 2000857 [28] Liu Z R, Wang H, Li M, Tao L L, Paudel T R, Yu H Y, Wang Y X, Hong S Y, Zhang M, Ren Z H, Xie Y W, Tsymbal E Y, Chen J S, Zhang Z and Tian H 2023 Nature 613 656 [29] Jia C L, Nagarajan V, He J Q, Houben L, Zhao T, Ramesh R, Urban K and Waser R 2007 Nat. Mater. 6 64 [30] Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin, S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J and Ramesh R 2009 Nat. Mater. 8 229 [31] Nelson C T, Winchester B, Zhang Y, Kim S J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q and Pan X Q 2011 Nano Lett. 11 828 [32] Gao W P, Addiego C, Wang H, Yan X X, Hou Y S, Ji D X, Heikes C, Zhang Y, Li L Z, Huyan H, Blum T, Aoki T, Nie Y F, Schlom D G, Wu R and Pan X Q 2019 Nature 575 480 [33] Wu H J, Zhang Y, Wu J G, Wang J and Pennycook S J 2019 Adv. Funct. Mater. 29 1902911 [34] Zeches R J, Rossell M D, Zhang J X, et al. 2009 Science 326 977 [35] Li F, Lin D B, Chen Z B, Cheng Z X, Wang J L, Li C C, Xu Z, Huang Q W, Liao X Z, Chen L Q, Shrout T R and Zhang S J 2018 Nat. Mater. 17 349 [36] Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G and Pennycook S J 2019 J. Am. Chem. Soc. 141 13987 [37] Zhang N, Zheng T, Li N, Zhao C L, Yin J, Zhang Y, Wu H J, Pennycook S J and Wu J G 2021 ACS Appl. Mater. Interfaces 13 7461 [38] Zhao C L, Wu H J, Li F, Cai Y Q, Zhang Y, Song D S, Wu J G, Lyu X, Yin J, Xiao D Q, Zhu J G and Pennycook S J 2018 J. Am. Chem. Soc. 140 15252 [39] Fu H X and Bellaiche L 2003 Phys. Rev. Lett. 91 257601 [40] Naumov I I, Bellaiche L and Fu H X 2004 Nature 432 737 [41] Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schleputz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W and Ramesh R 2016 Nature 534 138 [42] Das S, Tang Y L, Hong Z, et al. 2019 Nature 568 368 [43] Wang Y J, Feng Y P, Zhu Y L, Tang Y L, Yang L X, Zou M J, Geng W R, Han M J, Guo X W, Wu B and Ma X L 2020 Nat. Mater. 19 881 [44] Jeong C, Lee J, Jo H, Oh J, Baik H, Go K J, Son J, Choi S Y, Prosandeev S, Bellaiche L and Yang Y 2024 Nat. Commun. 15 3887 [45] Dong G H, Li S Z, Li T, et al. 2020 Adv. Mater. 32 2004477 [46] Fu Z Q, Chen X F, Li Z Q, Hu T F, Zhang L L, Lu P, Zhang S J, Wang G S, Dong X K and Xu F F 2020 Nat. Commun. 11 3809 [47] Liu Y X, Qu W B, Thong H C, Zhang Y, Zhang Y F, Yao F Z, Nguyen T N, Li J W, Zhang M H, Li J F, Han B, Gong W, Wu H J, Wu C F, Xu B and Wang K 2022 Adv. Mater. 34 2202558 [48] Wang H, Wu H J, Chi X, Li Y Y, Zhou C H, Yang P, Yu X J, Wang J, Chow G M, Yan X, Pennycook S J and Chen J S 2022 ACS Appl. Mater. Interfaces 14 8557 [49] Li J L, Qu W B, Daniels J, Wu H J, Liu L J, Wu J, Wang M W, Checchia S, Yang S, Lei H B, Lv R, Zhang Y, Wang D Y, Li X X, Ding X D, Sun J, Xu Z, Chang Y F, Zhang S J and Li F 2023 Science 380 87 [50] Wu H J, Ning S C, Waqar M, Liu H J, Zhang Y, Wu H H, Li N, Wu Y, Yao K, Lookman T, Ding X D, Sun J, Wang J and Pennycook S J 2021 Nat. Commun. 12 2841 [51] Gao P, Yang S Z, Ishikawa R, Li N, Feng B, Kumamoto A, Shibata N, Yu P and Ikuhara Y 2018 Phys. Rev. Lett. 120 267601 [52] Li L Z, Cheng X X, Jokisaari J R, Gao P, Britson J, Adamo C, Heikes C, Schlom D G, Chen L Q and Pan X Q 2018 Phys. Rev. Lett. 120 137602 [53] Waqar M, Wu H J, Ong K P, Liu H J, Li C J, Yang P, Zang W J, Liew W H, Diao C Z, Xi S B, Singh D J, He Q, Yao K, Pennycook S J and Wang J 2022 Nat. Commun. 13 3922 [54] Liu H J, Wu H J, Ong K P, Yang T N, Yang P, Das P K, Chi X, Zhang Y, Diao C Z, Wong W K A, Chew E P, Chen Y F, Tan C K I, Rusydi A, Breese M B H, Singh D J, Chen L Q, Pennycook S J and Yao K 2020 Science 369 292 [55] Li N, Zhu R X, Cheng X X, Liu H J, Zhang Z Y, Huang Y L, Chu Y H, Chen L Q, Ikuhara Y and Gao P 2021 Scripta Mater. 194 113624 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|