Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 017702    DOI: 10.1088/1674-1056/ad9ba0
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optimization of Skanavi model and its application to high permittivity materials

Hao Luo(罗昊), Xinrui Qin(秦新瑞), Kejia Geng(耿可佳), Cuncun Kong(孔存存), and Pengfei Cheng(成鹏飞)†
School of Science, Xi'an Polytechnic University, Xi'an 710048, China
Abstract  A novel method is introduced to optimize the traditional Skanavi model by decomposing the electric field of molecules into the electric field of ions and quantitatively describing the ionic-scale electric field by the structural coefficient of the effective electric field. Furthermore, the optimization of the Skanavi model is demonstrated and the ferroelectric phase transition of BaTiO$_3$ crystals is revealed by calculating the optical and static permittivities of BaTiO$_{3}$, CaTiO$_{3}$, and SrTiO$_{3}$ crystals and the structure coefficients of the effective electric field of BT crystals after Ti$^{4+}$ displacement. This research compensates for the deficiencies of the traditional Skanavi model and refines the theoretical framework for analyzing dielectric properties in high permittivity materials.
Keywords:  electric field      structural coefficient      permittivity      Skanavi model  
Received:  06 September 2024      Revised:  23 October 2024      Accepted manuscript online:  09 December 2024
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  77.80.B- (Phase transitions and Curie point)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51277138), the Natural Science Basic Research Program of Shaanxi Province of China (Grant No. 2021JM-442), and the Fund from the Shaanxi Provincial Science and Technology Department for Qin Chuangyuan Scientist + Engineer Team (Grant No. 2024QCY-KXJ-194).
Corresponding Authors:  Pengfei Cheng     E-mail:  pfcheng@xpu.edu.cn

Cite this article: 

Hao Luo(罗昊), Xinrui Qin(秦新瑞), Kejia Geng(耿可佳), Cuncun Kong(孔存存), and Pengfei Cheng(成鹏飞) Optimization of Skanavi model and its application to high permittivity materials 2025 Chin. Phys. B 34 017702

[1] Adediji Y B, Adeyinka A M and Yahya D I 2023 Energy Ecol Environ 8 401
[2] Szafraniak B, Fusnik Ł, Xu J, et al. 2021 Coatings 11 185
[3] Prasatkhetragarn A, Sareein T, Triamnak N, et al. 2022 Ferroelectrics 586 224
[4] Ma J Y 2024 Chin. Phys. Lett 41 078202
[5] Yao H B 2022 Chin. Phys. B 31 088106
[6] Guo X, Li Y, Xiao W, et al. 2024 Physica C 617 1354447
[7] Talebian E and Talebian M A 2013 Optik 124 2324
[8] Van Santen J H and Opechowski W 1948 Physica 14 545
[9] Shannon R D 1993 J. Appl. Phys. 73 348
[10] Tessman J R, Kahn A H and Shockley W 1953 Phys. Rev. 92 890
[11] Pirenne J and Kartheuser E 1964 Physica 30 2005
[12] Goldschmidt V M 1929 Trans. Faraday Soc. 25 253
[13] Shannon R D 1976 Acta Cryst. 32 751
[14] Pauling L J 1927 Am. Chem. Soc. 49 765
[15] Roberts S 1949 Phys. Rev. 76 1215
[16] Kennedy B J, Howard C J and Chakoumakos B C 1999 J. Phys.- Condens. Mat. 11 1479
[17] Lemanov V V, Sotnikov A V, Smirnova E P, et al. 1999 Solid State Commun. 110 611
[18] Cockayne E and Burton B P 2000 Phys. Rev. B 62 3735
[19] Rabiei M, Palevicius A, Monshi A, et al. 2020 Nanomaterials-Basel 10 1627
[20] Abramov Y A, Tsirelson V G, Zavodnik V E, et al. 1995 Acta Cryst. 51 942
[21] Ghosez P S H, Gonze X and Michenaud J P 1998 Ferroelectrics 206 205
[22] Evarestov R A and Bandura A V 2012 J. Comput. Chem. 33 1123
[23] Hermet P, Veithen M and Ghosez P 2009 J. Phys.: Condens. Matter 21 215901
[24] Zhong W, King-Smith R D and Vanderbilt D 1994 Phys. Rev. Lett. 72 3618
[25] Jonker G H and Van Santen J H 1949 Science 109 632
[26] Linz Jr A and Herrington K 1958 J. Chem. Phys. 28 824
[27] Wainer E 1946 Trans. Electrochem. Soc. 89 331
[28] Shu H B, Zhou G C and Zhong X L, et al. 2007 J. Phys.: Condens. Matter 19 276213
[1] Coexisting fast-slow dendritic traveling waves in a 3D-array electric field coupled neuronal network
Xile Wei(魏熙乐), Zeyu Ren(任泽宇), Meili Lu(卢梅丽), Yaqin Fan(樊亚琴), and Siyuan Chang(常思远). Chin. Phys. B, 2024, 33(6): 068702.
[2] Non-Kramers doublet ground state in a quaternary cubic compound PrRu2In2Zn18 investigated by ultrasonic measurements
Hua-Yuan Zhang(张化远), Kazuhei Wakiya, Mitsuteru Nakamura, Masahito Yoshizawa, and Yoshiki Nakanish. Chin. Phys. B, 2024, 33(6): 064301.
[3] Extending microwave-frequency electric-field detection through single transmission peak method
ing Liu(刘青), Jin-Zhan Chen(陈进湛), He Wang(王赫), Jie Zhang(张杰), Wei-Min Ruan(阮伟民), Guo-Zhu Wu(伍国柱), Shun-Yuan Zheng(郑顺元), Jing-Ting Luo(罗景庭), and Zhen-Fei Song(宋振飞). Chin. Phys. B, 2024, 33(5): 054203.
[4] Effects of vacancy and external electric field on the electronic properties of the MoSi2N4/graphene heterostructure
Qian Liang(梁前), Xiangyan Luo(罗祥燕), Guolin Qian(钱国林), Yuanfan Wang(王远帆), Yongchao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2024, 33(3): 037101.
[5] Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields
Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2024, 33(2): 027501.
[6] Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
Yingge Liu(刘滢格), Xingcai Li(李兴财), Juan Wang(王娟), Xin Ma(马鑫), and Wenhai Sun(孙文海). Chin. Phys. B, 2024, 33(1): 014101.
[7] Charge trapping effect at the interface of ferroelectric/interlayer in the ferroelectric field effect transistor gate stack
Xiaoqing Sun(孙晓清), Hao Xu(徐昊), Junshuai Chai(柴俊帅), Xiaolei Wang(王晓磊), and Wenwu Wang(王文武). Chin. Phys. B, 2023, 32(8): 087701.
[8] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[9] Structure and stability of nitrogen hydrate in a single-walled carbon nanotube under external electric fields
Chi Xu(徐驰), Jiaxian Li(厉嘉贤), Min Wei(韦敏), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2023, 32(7): 076402.
[10] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[11] Thermal spin molecular logic gates modulated by an electric field
Xingyi Tan(谭兴毅), Qiang Li(李强), and Dahua Ren(任达华). Chin. Phys. B, 2023, 32(5): 057101.
[12] Effects of electric field on vibrational resonances in Hindmarsh-Rose neuronal systems for signal detection
Xiaoxia Li(李晓霞), Xiaopeng Xue(薛小鹏), Dongjie Liu(刘栋杰), Tianyi Yu(余天意), Qianqian He(何倩倩), and Guizhi Xu(徐桂芝). Chin. Phys. B, 2023, 32(4): 048701.
[13] Optical anapole modes in hybrid metal-dielectric nanoantenna for near-field enhancement and optical sensing
Debao Wang(王德宝), Jingwei Lv(吕靖薇), Wei Liu(刘伟), Yanru Ren(任艳茹), Wei Li(李薇), Xinchen Xu(许鑫辰), Chao Liu(刘超), and Paul K Chu(朱剑豪). Chin. Phys. B, 2023, 32(11): 110204.
[14] Electric field intensity measurement by using doublet electromagnetically induced transparency of cold Rb Rydberg atoms
Ting Gong(宫廷), Shuai Shi(师帅), Zhonghua Ji(姬中华), Guqing Guo(郭古青), Xiaocong Sun(孙小聪), Yali Tian(田亚莉), Xuanbing Qiu(邱选兵), Chuanliang Li(李传亮), Yanting Zhao(赵延霆), and Suotang Jia(贾锁堂). Chin. Phys. B, 2023, 32(10): 103202.
[15] Nonmonotonic anomalous Hall effect and anisotropic magnetoresistance in SrRuO3/PbZr0.52Ti0.48O3 heterostructures
Zhen-Li Wang(王振礼), Chao-Yang Kang(康朝阳), Cai-Hong Jia(贾彩虹), Hai-Zhong Guo(郭海中), and Wei-Feng Zhang(张伟风). Chin. Phys. B, 2023, 32(10): 107303.
No Suggested Reading articles found!