Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097701    DOI: 10.1088/1674-1056/adee8a
RAPID COMMUNICATION Prev   Next  

Experimental demonstration and mechanism study of single-event gate leakage current in 4H-SiC power MOSFET with top oxide and double P-well structures

Yin Luo(罗寅)1, Keyu Liu(刘科宇)1, Hao Yuan(袁昊)1, Zhiwen Zhang(张质文)1, Chao Han(韩超)1,2,†, Xiaoyan Tang(汤晓燕)1, Qingwen Song(宋庆文)1,2, and Yuming Zhang(张玉明)1,2
1 Xidian University, Xi'an 710071, China;
2 Xidian-Wuhu Research Institute, Wuhu 241002, China
Abstract  This work proposes and fabricates the 4H-SiC power MOSFET with top oxide and double P-well (TODP-MOSFET) to enhance the single-event radiation tolerance of the gate oxide. Simulation results suggest that the proposed TODP structure reduces the peak electric field within the oxide and minimizes the sensitive region by more than 70% compared to C-MOSFETs. Experimental results show that the gate degradation voltage of the TODP-MOSFET is higher than that of the C-MOSFET, and the gate leakage current is reduced by 95% compared to the C-MOSFET under heavy-ion irradiation with a linear energy transfer (LET) value exceeding 75 MeV$\cdot $cm$^{2}$/mg.
Keywords:  silicon carbide      single-event leakage current (SELC)      gate oxide      electric field      gate leakage current velocity  
Received:  30 April 2025      Revised:  03 July 2025      Accepted manuscript online:  11 July 2025
PACS:  77.55.dj (For nonsilicon electronics (Ge, III-V, II-VI, organic electronics))  
  43.72.+q (Speech processing and communication systems)  
  43.38.Hz (Transducer arrays, acoustic interaction effects in arrays)  
Fund: This work was supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U2341220) and the Hefei Comprehensive National Science Center.
Corresponding Authors:  Chao Han     E-mail:  chaohan@xidian.edu.cn

Cite this article: 

Yin Luo(罗寅), Keyu Liu(刘科宇), Hao Yuan(袁昊), Zhiwen Zhang(张质文), Chao Han(韩超), Xiaoyan Tang(汤晓燕), Qingwen Song(宋庆文), and Yuming Zhang(张玉明) Experimental demonstration and mechanism study of single-event gate leakage current in 4H-SiC power MOSFET with top oxide and double P-well structures 2025 Chin. Phys. B 34 097701

[1] She X, Huang A Q, Li L and Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193
[2] Lauenstein J M, Casey M C, Ladbury R L, Kim H S, Phan A M and Topper A D 2021 Proc. IEEE Int. Reliab. Phys. Symp. (IRPS), Mar 2021, pp. 498-505
[3] Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Witulski A F, Reed R A, Schrimpf R D, Hutson J M and Lauenstein J M 2021 IEEE Trans. Nucl. Sci. 68 1430
[4] Mizuta E, Kuboyama S, Abe H, Iwata Y and Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924
[5] Abbate C, Busatto G, Tedesco D, Sanseverino A, Silvestrin L, Velardi F and Wyss J 2019 IEEE Trans. Electron Devices 66 4235
[6] Liang X, Zhao J, Zheng Q, Cui J, Yang S,Wang B, Zhang D, Yu X and Guo Q 2021 Radiat. Eff. Defects Solids 176 1038
[7] Busatto G, Di Pasquale A, Marciano D, Palazzo S, Sanseverino A and Velardi F 2020 Microelectron. Reliab. 114 113903
[8] Qiu L, Bai Y, Chen Y, Dong Z, Ding J, Hao J, Tang Y, Tian X and Liu X 2025 IEEE Trans. Nucl. Sci. 72 2340
[9] Wang L, Dong T, Fang X, Qi X, Wang L, Chen M, Zhang X and Zhao Y 2024 At. Energy Sci. Technol. 59 957 (in Chinese)
[10] Wang Y, Lin M, Li X J, Wu X, Yang J Q, Bao M T, Yu C H and Cao F 2019 IEEE Trans. Electron Devices 66 4264
[11] Lu J, Song W, Liu T, Tang J, Zhao W, Li D and Li B 2023 IEEE Trans. Electron Devices 70 6459
[12] Liu S, Titus J L and Boden M 2007 IEEE Trans. Nucl. Sci. 54 2554
[13] Zhang Z, Yuan H, Liu K, Zhang Y, Liu Y, Han C, Tang X, Zhang Y and Song Q 2024 IEEE Electron Device Lett. 45 2495
[14] Konstantinov A O, Wahab Q, Nordell N and Lindefelt U 1997 Appl. Phys. Lett. 71 90
[15] Okuto Y and Crowell C R 1975 Solid-State Electron. 18 161
[16] McPherson J A, Kowal P J, Pandey G K, Chow T P, Ji W and Woodworth A A 2019 IEEE Trans. Nucl. Sci. 66 474
[1] Single event burnout in SiC MOSFETs induced by nuclear reactions with high-energy oxygen ions
Shi-Wei Zhao(赵世伟), Bing Ye(叶兵), Yu-Zhu Liu(刘郁竹), Xiao-Yu Yan(闫晓宇), Pei-Pei Hu(胡培培), Teng Zhang(张腾), Peng-Fei Zhai(翟鹏飞), Jing-Lai Duan(段敬来), and Jie Liu(刘杰). Chin. Phys. B, 2025, 34(7): 078501.
[2] Influence of surface contamination on electric field distribution of insulators
Xingcai Li(李兴财), Yingge Liu(刘滢格), and Juan Wang(王娟). Chin. Phys. B, 2025, 34(3): 034101.
[3] Optimization of Skanavi model and its application to high permittivity materials
Hao Luo(罗昊), Xinrui Qin(秦新瑞), Kejia Geng(耿可佳), Cuncun Kong(孔存存), and Pengfei Cheng(成鹏飞). Chin. Phys. B, 2025, 34(1): 017702.
[4] Coexisting fast-slow dendritic traveling waves in a 3D-array electric field coupled neuronal network
Xile Wei(魏熙乐), Zeyu Ren(任泽宇), Meili Lu(卢梅丽), Yaqin Fan(樊亚琴), and Siyuan Chang(常思远). Chin. Phys. B, 2024, 33(6): 068702.
[5] Non-Kramers doublet ground state in a quaternary cubic compound PrRu2In2Zn18 investigated by ultrasonic measurements
Hua-Yuan Zhang(张化远), Kazuhei Wakiya, Mitsuteru Nakamura, Masahito Yoshizawa, and Yoshiki Nakanish. Chin. Phys. B, 2024, 33(6): 064301.
[6] Extending microwave-frequency electric-field detection through single transmission peak method
ing Liu(刘青), Jin-Zhan Chen(陈进湛), He Wang(王赫), Jie Zhang(张杰), Wei-Min Ruan(阮伟民), Guo-Zhu Wu(伍国柱), Shun-Yuan Zheng(郑顺元), Jing-Ting Luo(罗景庭), and Zhen-Fei Song(宋振飞). Chin. Phys. B, 2024, 33(5): 054203.
[7] Effects of vacancy and external electric field on the electronic properties of the MoSi2N4/graphene heterostructure
Qian Liang(梁前), Xiangyan Luo(罗祥燕), Guolin Qian(钱国林), Yuanfan Wang(王远帆), Yongchao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2024, 33(3): 037101.
[8] Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields
Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2024, 33(2): 027501.
[9] Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
Yingge Liu(刘滢格), Xingcai Li(李兴财), Juan Wang(王娟), Xin Ma(马鑫), and Wenhai Sun(孙文海). Chin. Phys. B, 2024, 33(1): 014101.
[10] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[11] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
[12] Novel layout design of 4H-SiC merged PiN Schottky diodes leading to improved surge robustness
Jia-Hao Chen(陈嘉豪), Ying Wang(王颖), Xin-Xing Fei(费新星), Meng-Tian Bao(包梦恬), and Fei Cao(曹菲). Chin. Phys. B, 2023, 32(9): 098505.
[13] Charge trapping effect at the interface of ferroelectric/interlayer in the ferroelectric field effect transistor gate stack
Xiaoqing Sun(孙晓清), Hao Xu(徐昊), Junshuai Chai(柴俊帅), Xiaolei Wang(王晓磊), and Wenwu Wang(王文武). Chin. Phys. B, 2023, 32(8): 087701.
[14] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[15] Structure and stability of nitrogen hydrate in a single-walled carbon nanotube under external electric fields
Chi Xu(徐驰), Jiaxian Li(厉嘉贤), Min Wei(韦敏), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2023, 32(7): 076402.
No Suggested Reading articles found!