| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Single event burnout in SiC MOSFETs induced by nuclear reactions with high-energy oxygen ions |
| Shi-Wei Zhao(赵世伟)1,2, Bing Ye(叶兵)1,2,3, Yu-Zhu Liu(刘郁竹)1,2, Xiao-Yu Yan(闫晓宇)1, Pei-Pei Hu(胡培培)1, Teng Zhang(张腾)4, Peng-Fei Zhai(翟鹏飞)1,2,3, Jing-Lai Duan(段敬来)1,2,3, and Jie Liu(刘杰)1,2,3,† |
1 Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; 2 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 State Key Laboratory of Heavy Ion Science and Technology, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; 4 Nanjing Electronic Devices Institute, Nanjing 210016, China |
|
|
|
|
Abstract We investigate the impact of high-energy O ions on the occurrence of single-event burnout (SEB) in silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) under various bias conditions. Through a combination of SRIM, GEANT4, and TCAD simulations, we explore the role of secondary ions generated by nuclear reactions between high-energy O ions and SiC materials. These secondary ions, with significantly higher linear energy transfer (LET) values, contribute to electron-hole pair generation, leading to SEB. Our results show that the energy deposition and penetration depth of these secondary ions, especially those with high LET, are sufficient to induce catastrophic SEB in SiC MOSFETs. The study also highlights the critical influence of reverse bias voltage on SEB occurrence and provides insights into the failure mechanisms induced by nuclear reactions with high-energy O ions. This work offers valuable understanding for improving the radiation resistance of SiC-based power devices used in space and high-radiation environments, contributing to the design of more reliable electronics for future space missions.
|
Received: 02 March 2025
Revised: 13 April 2025
Accepted manuscript online: 16 April 2025
|
|
PACS:
|
85.30.Tv
|
(Field effect devices)
|
| |
61.80.Jh
|
(Ion radiation effects)
|
| |
51.50.+v
|
(Electrical properties)
|
| |
84.30.Jc
|
(Power electronics; power supply circuits)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12035019 and 62234013) and the National Key Research and Development Program of China (Grant Nos. 2023YFA1609000 and 2022YFB3604001). |
Corresponding Authors:
Jie Liu
E-mail: j.liu@impcas.ac.cn
|
Cite this article:
Shi-Wei Zhao(赵世伟), Bing Ye(叶兵), Yu-Zhu Liu(刘郁竹), Xiao-Yu Yan(闫晓宇), Pei-Pei Hu(胡培培), Teng Zhang(张腾), Peng-Fei Zhai(翟鹏飞), Jing-Lai Duan(段敬来), and Jie Liu(刘杰) Single event burnout in SiC MOSFETs induced by nuclear reactions with high-energy oxygen ions 2025 Chin. Phys. B 34 078501
|
[1] Ruddy F H, Dulloo A R, Seidel J G, Palmour J W and Singh R 2003 Nucl. Instrum. Methods Phys. Res. A 505 159 [2] Singh R, Capell D C, Hefner A R, Lai J and Palmour J W 2002 IEEE Trans. Electron Devices 49 2054 [3] Funaki T, Kimoto T and Hikihara T 2008 IEEE Trans. Power Electron. 23 2602 [4] Ohshima T, Itoh H and Yoshikawa M 2001 J. Appl. Phys. 90 3038 [5] Ball D R, Hutson J M, Javanainen A, Lauenstein J M, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A and Schrimpf R D 2020 IEEE Trans. Nucl. Sci. 67 22 [6] Deki M, Makino T, Iwamoto N, Onoda S, Kojima K, Tomita T and Ohshima T 2014 Nucl. Instrum. Methods Phys. Res. B 319 75 [7] Cao R, Wang K, Meng Y, Li L, Zhao L, Han D, Liu Y, Zheng S, Li H, Jiang Y, Zeng X and Xue Y 2023 Chin. Phys. B 32 068502 [8] Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F and Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150 [9] Zhang H, Guo H, Lei Z, Peng C, Zhang Z, Chen Z, Sun C, He Y, Zhang F, Pan X, Zhong X and Ouyang X 2023 Chin. Phys. B 32 028504 [10] Martinella C, Natzke P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U and Javanainen A 2022 Microelectron. Reliab. 128 114423 [11] Lauenstein J M, Casey M C, Ladbury R L, Kim H S, Phan A M and Topper A D 2021 IEEE Int. Reliab. Phys. Symp. (IRPS) 1 [12] Burigo L N, Pshenichnov I A, Mishustin I N and Bleicher M 2014 J. Phys.: Conf. Ser. 503 012021 [13] Zhang H, Guo H, Zhang F, Lei Z, Pan X, Liu Y, Gu Z, Ju A, Zhong X and Ouyang X 2021 Microelectron. Reliab. 124 114329 [14] Li X, Jiang W, Wang Y, Zhang H, Peng C, Zhang X, Liang X, Fu W, Zhang Z, Lei Z, Ma T and Yang J Y 2024 Appl. Phys. Lett. 125 092101 [15] Siddiqui A, Hallén A and Usman M 2023 Phys. Status Solidi A 220 2300300 [16] Zhang H, Guo H X, Lei Z F, Peng C, Ma W Y, Wang D, Sun C H, Zhang F Q, Zhang Z G, Yang Y, Lv W, Wang Z M, Zhong X L and Ouyang X P 2023 Chin. Phys. B 32 108503 [17] Kuboyama S, Matsuda S, Kanno T and Hirose T 1994 IEEE Trans. Nucl. Sci. 41 2210 [18] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818 [19] Martinella C, Natzke P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U and Javanainen A 2022 Microelectron. Reliab. 128 114423 [20] Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J M, Sternberg A L and Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 1951 [21] Agostinelli S, et al. 2003 Nucl. Instrum. Methods Phys. Res. A 506 250 [22] Allison J, et al. 2016 Nucl. Instrum. Methods Phys. Res. A 835 186 [23] Li M B, Cao F, Hu H F, Li X J, Yang J Q and Wang Y 2021 IEEE J. Electron Devices Soc. 9 591 [24] Makino T, Deki M, Iwamoto N, Onoda S, Hoshino N, Tsuchida H, Hirao T and Ohshima T 2013 IEEE Trans. Nucl. Sci. 60 2647 [25] Dong X, Huang M, Ma Y, Fu C, He M, Yang Z, Li Y and Gong M 2024 IEEE Trans. Nucl. Sci. 71 2252 [26] Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Witulski A F, Reed R A, Schrimpf R D, Hutson J M and Lauenstein J M 2021 IEEE Trans. Nucl. Sci. 68 1430 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|