| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Hydrothermal synthesis and nonvolatile resistive switching properties of α-Fe2O3 nanosheet arrays |
| Zhi-Qiang Yu(余志强)1,2,3,†, Xin-Wei Zhao(赵新为)1, Bao-Sheng Liu(刘宝生)1, Tang-You Sun(孙堂友)4, and Zhi-Mou Xu(徐智谋)3,á |
1 School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; 2 School of Computer and Information Technology, Hohhot Minzu College, Hohhot 010051, China; 3 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; 4 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China |
|
|
|
|
Abstract A facile one-step hydrothermal method has been reported to synthesize the $\alpha $-Fe$_{2}$O$_{3}$ nanosheet arrays with the preferred orientation along the [104] direction on the ITO substrate. The $\alpha $-Fe$_{2}$O$_{3}$ nanosheet arrays-based W/$\alpha $-Fe$_{2}$O$_{3}$/ITO memristor has been achieved by depositing the circular W top electrodes on the $\alpha $-Fe$_{2}$O$_{3}$ nanosheet arrays. The as-prepared W/$\alpha $-Fe$_{2}$O$_{3}$/ITO memristor shows a reliable nonvolatile bipolar resistive switching behavior with the high resistance ratio of about 10$^{3}$ at the reading voltage of 0.1 V, good resistance retention over 10$^{3 }$ s, ultralow set voltage of $-0.6$ V and reset voltage of 0.7 V, and good durability. In addition, the tunneling conduction mechanism modified by the oxygen vacancies has been proposed and suggested to be responsible for the nonvolatile resistive switching behavior of the as-prepared W/$\alpha $-Fe$_{2}$O$_{3}$/ITO memristor. This work demonstrates that the as-prepared $\alpha $-Fe$_{2}$O$_{3}$ nanosheet arrays-based W/$\alpha $-Fe$_{2}$O$_{3}$/ITO memristor would be a promising candidate for further ultralow power nonvolatile memory applications.
|
Received: 30 March 2025
Revised: 28 June 2025
Accepted manuscript online: 11 July 2025
|
|
PACS:
|
73.40.Rw
|
(Metal-insulator-metal structures)
|
| |
72.60.+g
|
(Mixed conductivity and conductivity transitions)
|
| |
72.80.Ga
|
(Transition-metal compounds)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62341305 and 22269002), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2024GXNSFFA010007), the Science and Technology Project of Guangxi Zhuang Autonomous Region, China (Grant No. AD19110038), the Key Laboratory of AI and Information Processing, Education Department of Guangxi Zhuang Autonomous Region (Grant No. 2024GXZDSY015), and the Innovation Project of Guangxi University of Science and Technology Graduate Education (Grant No. GKYC202408). |
Corresponding Authors:
Zhi-Qiang Yu, Zhi-Mou Xu
E-mail: zhiqiangyu@alumni.hust.edu.cn;xuzhimou@mail.hust.edu.cn
|
Cite this article:
Zhi-Qiang Yu(余志强), Xin-Wei Zhao(赵新为), Bao-Sheng Liu(刘宝生), Tang-You Sun(孙堂友), and Zhi-Mou Xu(徐智谋) Hydrothermal synthesis and nonvolatile resistive switching properties of α-Fe2O3 nanosheet arrays 2026 Chin. Phys. B 35 017302
|
[1] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80 [2] Sarkar D and Singh A K 2017 J. Phys. Chem. C 121 12953 [3] Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R and Williams R S 2008 Nat. Nanotechnol. 3 429 [4] Kim S, Lee J, Ling L, Liu S E, Lim H, Sangwan V K, Hersam M C and Lee H 2021 Adv. Mater. 34 2106913 [5] Li J M, Su W X, Li J, Wang L, Ren J, Zhang S, Cheng P T, Hong H, Wang D H, Zhou Y, Mi W B and Du Y W 2021 Nano Lett. 21 5060 [6] Shan X Y, Wang Z Q, Lin Y, Zeng T, Zhao X N, Xu H Y and Liu Y C 2020 Adv. Electron. Mater. 6 2000536 [7] Yu Z Q, Liu M L, Lang J X, Qian K and Zhang C H 2018 Acta Phys. Sin. 67 157302 (in Chinese) [8] Yu Z Q, Sun T Y, Liu B S, Zhang L, Chen H J, Fan X S and Sun Z J 2021 J. Alloys Compd. 858 157749 [9] Alam M W, Jamir A, Longkumer B, Souayeh B, Sadaf S and Moirangthem B 2025 J. Alloys Compd. 1010 177032 [10] Huang C, Chang W, Huang J, Lin S and Chueh Y 2017 Nanoscale 9 6920 [11] Ismail M, Mahata C, Kang M and Kim S 2023 Ceramics International 49 19032 [12] Qi Y F, Shen Z J, Zhao C and Zhao C Z 2020 J. Alloys Compd. 822 153603 [13] Carvalho R C, Betts A J and Cassidy J F 2020 Phys. Chem. Chem. Phys. 22 4216 [14] Sun Y M, Song C, Yin J, Qiao L L,Wang R,Wang Z Y, Chen X Z, Yin S Q, Saleem M S, Wu H Q, Zeng F and Pan F 2019 Appl. Phys. Lett. 114 193502 [15] Kyesmen P I, Nombona N and Diale M 2021 ACS Omega 6 33398 [16] Liang K D, Huang C H, Lai C C, Huang J S, Tsai H W, Wang Y C, Shih Y C, Chang M T, Lo S C and Chueh Y L 2014 ACS Appl. Mater. Interfaces 6 16537 [17] Huang C H, Matsuzaki K and Nomura K J 2020 Appl. Phys. Lett. 116 023503 [18] Cui D S, Du Y W, Lin Z H, Kang M Y, Wang Y F and Su J 2021 IEEE Electron Dev. Lett. 44 237 [19] Almadhoun M N, Speckbacher M, Olsen B C, Luber E J, Sayed S Y, Tornow M and Buriak J M 2021 Nano Lett. 21 2666 [20] Persson K, Ram M S, Kilpi O, Borg M and Wernersson L 2020 Adv. Electron. Mater. 6 2000154 [21] Wu S J, Wang F, Zhang Z C, Li Y, Han Y M, Yang Z C, Zhao J S and Zhang K L 2018 Chin. Phys. B 27 087701 [22] Sokolov A S, Jeon Y, Kim S, Ku B, Lim D, Han H, Chae M G, Lee J, Ha B G and Choi C 2018 Appl. Surf. Sci. 434 822 [23] Tu M L, Lu H P, Luo S W, Peng H, Li S D, Ke Y Z, Yuan S G, Huang W, Jie W J and Hao J H 2020 ACS Appl. Mater. Interfaces 12 24133 [24] Li Z H, Li J C and Cui H P 2020 J. Alloys Compd. 858 158091 [25] Kwon D, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X, Park G, Lee B, Han S, Kim M and Hwang C S 2010 Nat. Nanotechnol. 5 148 [26] Yu Z Q, Xu J M, Han X, Chen C, Qu X R, Tang J, Sun Z J and Xu Z M 2024 Mater. Rep. 38 23020160 [27] Yu Z Q, Qu X P, Yang W P, Peng J and Xu Z M 2016 J. Alloys Compd. 688 37 [28] Yu Z Q, Qu X P, Yang W P, Peng J and Xu Z M 2016 J. Alloys Compd. 688 294 [29] Liu H C, Tang X G, Liu Q X, Jiang Y P, Li W H, Guo X B and Tang Z H 2020 Ceramics International 46 21196 [30] Huang T T, Tao J C, Xu P R, Yang W L, Niu L K, Chen Z M, Chen X and Dai N 2024 ACS Appl. Electron. Mater. 6 1475 [31] Zhang F, Zhang Y, Li L L, Mou X, Peng H N, Shen S C,Wang M, Xiao K H, Ji S H, Yi D, Nan T X, Tang J S and Yu P 2023 Nat. Commun. 14 3950 [32] Lin C, Wang S, Lee D and Tseng T 2008 Journal of the Electrochemical Society 155 H615 [33] Yu Z Q, Jia J H, Ou M L, Sun T Y and Xu Z M 2025 Chin. Phys. B 34 127302 [34] Ismail M, Mahata C, Kang M and Kim S 2023 Ceramics International 49 19032 [35] Yan X B, Li Y C, Zhao J H, Xia Y D, Zhang M L and Liu Z G 2015 Phys. Lett. A 379 2392 [36] Inoue I H, Yasuda S, Akinaga H and Takagi H 2008 Phys. Rev. B 77 035105 [37] Khan M U, Hassan G and Bae J 2020 Journal of Materials Science: Materials in Electronics 31 1105 [38] Hu Q L, Park M, Shim J H, Yoon T, Choi Y J and Kang C J 2014 Microelectronic Engineering 127 40 [39] Yoo E J, Kang S Y, Shim E L, Yoon T S, Kang C J and Choi Y J 2015 J. Nanosci. Nanotechnol. 15 8622 [40] Zhou G D, Wu B, Liu X Q, Li Z L, Zhang S J, Zhou A K and Yang X D 2016 J. Alloys Compd. 678 31 [41] Ren Z J, Zhou G D and Wei S Q 2020 Phys. Chem. Chem. Phys. 22 2743 [42] Ko Y, Ryu S W and Cho J 2016 Appl. Surf. Sci. 368 36 [43] Zhao W X, Li Q L, Sun B, Shen Z, Liu Y H and Chen P 2014 Solid State Commun. 194 16 [44] Nguyen H H, Ta H K T, Park S, Phan T B and Pham N K 2010 RSC Adv. 10 12900 [45] Sun B, Li Q L, Zhao W X, Li H W, Wei L J and Chen P 2014 J. Nanopart. Res. 16 2389 [46] Sun B, Liu Y H, Zhao W X and Chen P 2015 RSC Adv. 5 13513 [47] Lee J Y, Kim J, Baek Y, Choi Y J, Kang C J, Lee H H and Yoon T 2014 Appl. Phys. Lett. 104 093514 [48] Baek Y, Hu Q L, Yoo J W, Choi Y J, Kang C J, Lee H H, Min S, Kim H, Kim K and Yoon T 2013 Nanoscale 5 772 [49] Lee J, Baek Y, Hu Q L, Choi Y J, Kang C J, Lee H H, Kim H, Kim K and Yoon T 2013 Appl. Phys. Lett. 102 122111 [50] Kukli K, Kemell M, Castán H, Dueñas S, Link J, Stern R, Heikkilä M J, J?ogiaas T, Kozlova J, Rähn M, Mizohata K, Ritala M and Leskelä M 2020 J. Vac. Sci. Technol. A 38 042405 [51] Chong R F, Du Y Q, Chang Z X, Jia Y H, Qiao Y, Liu S H, Liu Y, Zhou Y M and Li D L 2019 Applied Catalysis B: Environmental 250 224 [52] Liu J, Cai Y Y, Tian Z F, Ruan G S, Ye Y X, Liang C H and Shao G S 2014 Nano Energy 9 282 [53] Yan W J, Zeng X M, Liu H, Guo C W, Ling M and Zhou H P 2019 Chin. Phys. B 28 106801 [54] Zhang J, Zhu G Q, Liu W G, Xi Y X, Golosov D A, Zavadski S M and Melnikov S N 2020 J. Alloys Compd. 834 154992 [55] Wu Q N, Meng D D, Zhang Y, Zhao Q D, Bu Q J,Wang D J, Zou X X, Lin Y H, Li S and Xie T F 2019 J. Alloys Compd. 782 943 [56] Zhang P, Gao C X, Lv F Z, Wei Y P, Dong C H, Jia C L, Liu Q F and Xue D S 2014 Appl. Phys. Lett. 105 152904 [57] Chabungbam A S, Thakre A, Kim D, Kim M, Kim G, Lee H and Park H 2024 Appl. Surf. Sci. 670 160681 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|