Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 017302    DOI: 10.1088/1674-1056/adee88
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hydrothermal synthesis and nonvolatile resistive switching properties of α-Fe2O3 nanosheet arrays

Zhi-Qiang Yu(余志强)1,2,3,†, Xin-Wei Zhao(赵新为)1, Bao-Sheng Liu(刘宝生)1, Tang-You Sun(孙堂友)4, and Zhi-Mou Xu(徐智谋)3,á
1 School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China;
2 School of Computer and Information Technology, Hohhot Minzu College, Hohhot 010051, China;
3 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
4 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  A facile one-step hydrothermal method has been reported to synthesize the $\alpha $-Fe$_{2}$O$_{3}$ nanosheet arrays with the preferred orientation along the [104] direction on the ITO substrate. The $\alpha $-Fe$_{2}$O$_{3}$ nanosheet arrays-based W/$\alpha $-Fe$_{2}$O$_{3}$/ITO memristor has been achieved by depositing the circular W top electrodes on the $\alpha $-Fe$_{2}$O$_{3}$ nanosheet arrays. The as-prepared W/$\alpha $-Fe$_{2}$O$_{3}$/ITO memristor shows a reliable nonvolatile bipolar resistive switching behavior with the high resistance ratio of about 10$^{3}$ at the reading voltage of 0.1 V, good resistance retention over 10$^{3 }$ s, ultralow set voltage of $-0.6$ V and reset voltage of 0.7 V, and good durability. In addition, the tunneling conduction mechanism modified by the oxygen vacancies has been proposed and suggested to be responsible for the nonvolatile resistive switching behavior of the as-prepared W/$\alpha $-Fe$_{2}$O$_{3}$/ITO memristor. This work demonstrates that the as-prepared $\alpha $-Fe$_{2}$O$_{3}$ nanosheet arrays-based W/$\alpha $-Fe$_{2}$O$_{3}$/ITO memristor would be a promising candidate for further ultralow power nonvolatile memory applications.
Keywords:  hydrothermal method      $\alpha $-Fe$_{2}$O$_{3}$ nanosheet arrays      nonvolatile      tunneling conduction mechanism      oxygen vacancies  
Received:  30 March 2025      Revised:  28 June 2025      Accepted manuscript online:  11 July 2025
PACS:  73.40.Rw (Metal-insulator-metal structures)  
  72.60.+g (Mixed conductivity and conductivity transitions)  
  72.80.Ga (Transition-metal compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62341305 and 22269002), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2024GXNSFFA010007), the Science and Technology Project of Guangxi Zhuang Autonomous Region, China (Grant No. AD19110038), the Key Laboratory of AI and Information Processing, Education Department of Guangxi Zhuang Autonomous Region (Grant No. 2024GXZDSY015), and the Innovation Project of Guangxi University of Science and Technology Graduate Education (Grant No. GKYC202408).
Corresponding Authors:  Zhi-Qiang Yu, Zhi-Mou Xu     E-mail:  zhiqiangyu@alumni.hust.edu.cn;xuzhimou@mail.hust.edu.cn

Cite this article: 

Zhi-Qiang Yu(余志强), Xin-Wei Zhao(赵新为), Bao-Sheng Liu(刘宝生), Tang-You Sun(孙堂友), and Zhi-Mou Xu(徐智谋) Hydrothermal synthesis and nonvolatile resistive switching properties of α-Fe2O3 nanosheet arrays 2026 Chin. Phys. B 35 017302

[1] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[2] Sarkar D and Singh A K 2017 J. Phys. Chem. C 121 12953
[3] Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R and Williams R S 2008 Nat. Nanotechnol. 3 429
[4] Kim S, Lee J, Ling L, Liu S E, Lim H, Sangwan V K, Hersam M C and Lee H 2021 Adv. Mater. 34 2106913
[5] Li J M, Su W X, Li J, Wang L, Ren J, Zhang S, Cheng P T, Hong H, Wang D H, Zhou Y, Mi W B and Du Y W 2021 Nano Lett. 21 5060
[6] Shan X Y, Wang Z Q, Lin Y, Zeng T, Zhao X N, Xu H Y and Liu Y C 2020 Adv. Electron. Mater. 6 2000536
[7] Yu Z Q, Liu M L, Lang J X, Qian K and Zhang C H 2018 Acta Phys. Sin. 67 157302 (in Chinese)
[8] Yu Z Q, Sun T Y, Liu B S, Zhang L, Chen H J, Fan X S and Sun Z J 2021 J. Alloys Compd. 858 157749
[9] Alam M W, Jamir A, Longkumer B, Souayeh B, Sadaf S and Moirangthem B 2025 J. Alloys Compd. 1010 177032
[10] Huang C, Chang W, Huang J, Lin S and Chueh Y 2017 Nanoscale 9 6920
[11] Ismail M, Mahata C, Kang M and Kim S 2023 Ceramics International 49 19032
[12] Qi Y F, Shen Z J, Zhao C and Zhao C Z 2020 J. Alloys Compd. 822 153603
[13] Carvalho R C, Betts A J and Cassidy J F 2020 Phys. Chem. Chem. Phys. 22 4216
[14] Sun Y M, Song C, Yin J, Qiao L L,Wang R,Wang Z Y, Chen X Z, Yin S Q, Saleem M S, Wu H Q, Zeng F and Pan F 2019 Appl. Phys. Lett. 114 193502
[15] Kyesmen P I, Nombona N and Diale M 2021 ACS Omega 6 33398
[16] Liang K D, Huang C H, Lai C C, Huang J S, Tsai H W, Wang Y C, Shih Y C, Chang M T, Lo S C and Chueh Y L 2014 ACS Appl. Mater. Interfaces 6 16537
[17] Huang C H, Matsuzaki K and Nomura K J 2020 Appl. Phys. Lett. 116 023503
[18] Cui D S, Du Y W, Lin Z H, Kang M Y, Wang Y F and Su J 2021 IEEE Electron Dev. Lett. 44 237
[19] Almadhoun M N, Speckbacher M, Olsen B C, Luber E J, Sayed S Y, Tornow M and Buriak J M 2021 Nano Lett. 21 2666
[20] Persson K, Ram M S, Kilpi O, Borg M and Wernersson L 2020 Adv. Electron. Mater. 6 2000154
[21] Wu S J, Wang F, Zhang Z C, Li Y, Han Y M, Yang Z C, Zhao J S and Zhang K L 2018 Chin. Phys. B 27 087701
[22] Sokolov A S, Jeon Y, Kim S, Ku B, Lim D, Han H, Chae M G, Lee J, Ha B G and Choi C 2018 Appl. Surf. Sci. 434 822
[23] Tu M L, Lu H P, Luo S W, Peng H, Li S D, Ke Y Z, Yuan S G, Huang W, Jie W J and Hao J H 2020 ACS Appl. Mater. Interfaces 12 24133
[24] Li Z H, Li J C and Cui H P 2020 J. Alloys Compd. 858 158091
[25] Kwon D, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X, Park G, Lee B, Han S, Kim M and Hwang C S 2010 Nat. Nanotechnol. 5 148
[26] Yu Z Q, Xu J M, Han X, Chen C, Qu X R, Tang J, Sun Z J and Xu Z M 2024 Mater. Rep. 38 23020160
[27] Yu Z Q, Qu X P, Yang W P, Peng J and Xu Z M 2016 J. Alloys Compd. 688 37
[28] Yu Z Q, Qu X P, Yang W P, Peng J and Xu Z M 2016 J. Alloys Compd. 688 294
[29] Liu H C, Tang X G, Liu Q X, Jiang Y P, Li W H, Guo X B and Tang Z H 2020 Ceramics International 46 21196
[30] Huang T T, Tao J C, Xu P R, Yang W L, Niu L K, Chen Z M, Chen X and Dai N 2024 ACS Appl. Electron. Mater. 6 1475
[31] Zhang F, Zhang Y, Li L L, Mou X, Peng H N, Shen S C,Wang M, Xiao K H, Ji S H, Yi D, Nan T X, Tang J S and Yu P 2023 Nat. Commun. 14 3950
[32] Lin C, Wang S, Lee D and Tseng T 2008 Journal of the Electrochemical Society 155 H615
[33] Yu Z Q, Jia J H, Ou M L, Sun T Y and Xu Z M 2025 Chin. Phys. B 34 127302
[34] Ismail M, Mahata C, Kang M and Kim S 2023 Ceramics International 49 19032
[35] Yan X B, Li Y C, Zhao J H, Xia Y D, Zhang M L and Liu Z G 2015 Phys. Lett. A 379 2392
[36] Inoue I H, Yasuda S, Akinaga H and Takagi H 2008 Phys. Rev. B 77 035105
[37] Khan M U, Hassan G and Bae J 2020 Journal of Materials Science: Materials in Electronics 31 1105
[38] Hu Q L, Park M, Shim J H, Yoon T, Choi Y J and Kang C J 2014 Microelectronic Engineering 127 40
[39] Yoo E J, Kang S Y, Shim E L, Yoon T S, Kang C J and Choi Y J 2015 J. Nanosci. Nanotechnol. 15 8622
[40] Zhou G D, Wu B, Liu X Q, Li Z L, Zhang S J, Zhou A K and Yang X D 2016 J. Alloys Compd. 678 31
[41] Ren Z J, Zhou G D and Wei S Q 2020 Phys. Chem. Chem. Phys. 22 2743
[42] Ko Y, Ryu S W and Cho J 2016 Appl. Surf. Sci. 368 36
[43] Zhao W X, Li Q L, Sun B, Shen Z, Liu Y H and Chen P 2014 Solid State Commun. 194 16
[44] Nguyen H H, Ta H K T, Park S, Phan T B and Pham N K 2010 RSC Adv. 10 12900
[45] Sun B, Li Q L, Zhao W X, Li H W, Wei L J and Chen P 2014 J. Nanopart. Res. 16 2389
[46] Sun B, Liu Y H, Zhao W X and Chen P 2015 RSC Adv. 5 13513
[47] Lee J Y, Kim J, Baek Y, Choi Y J, Kang C J, Lee H H and Yoon T 2014 Appl. Phys. Lett. 104 093514
[48] Baek Y, Hu Q L, Yoo J W, Choi Y J, Kang C J, Lee H H, Min S, Kim H, Kim K and Yoon T 2013 Nanoscale 5 772
[49] Lee J, Baek Y, Hu Q L, Choi Y J, Kang C J, Lee H H, Kim H, Kim K and Yoon T 2013 Appl. Phys. Lett. 102 122111
[50] Kukli K, Kemell M, Castán H, Dueñas S, Link J, Stern R, Heikkilä M J, J?ogiaas T, Kozlova J, Rähn M, Mizohata K, Ritala M and Leskelä M 2020 J. Vac. Sci. Technol. A 38 042405
[51] Chong R F, Du Y Q, Chang Z X, Jia Y H, Qiao Y, Liu S H, Liu Y, Zhou Y M and Li D L 2019 Applied Catalysis B: Environmental 250 224
[52] Liu J, Cai Y Y, Tian Z F, Ruan G S, Ye Y X, Liang C H and Shao G S 2014 Nano Energy 9 282
[53] Yan W J, Zeng X M, Liu H, Guo C W, Ling M and Zhou H P 2019 Chin. Phys. B 28 106801
[54] Zhang J, Zhu G Q, Liu W G, Xi Y X, Golosov D A, Zavadski S M and Melnikov S N 2020 J. Alloys Compd. 834 154992
[55] Wu Q N, Meng D D, Zhang Y, Zhao Q D, Bu Q J,Wang D J, Zou X X, Lin Y H, Li S and Xie T F 2019 J. Alloys Compd. 782 943
[56] Zhang P, Gao C X, Lv F Z, Wei Y P, Dong C H, Jia C L, Liu Q F and Xue D S 2014 Appl. Phys. Lett. 105 152904
[57] Chabungbam A S, Thakre A, Kim D, Kim M, Kim G, Lee H and Park H 2024 Appl. Surf. Sci. 670 160681
[1] Electronic structure and disorder effect of La3Ni2O7 superconductor
Yuxin Wang(王郁欣), Yi Zhang(张燚), and Kun Jiang(蒋坤). Chin. Phys. B, 2025, 34(4): 047105.
[2] Sol-gel synthesis and nonvolatile resistive switching behaviors of wurtzite phase ZnO nanofilms
Zhi-Qiang Yu(余志强), Jin-Hao Jia(贾金皓), Mei-Lian Ou(欧梅莲), Tang-You Sun(孙堂友), and Zhi-Mou Xu(徐智谋). Chin. Phys. B, 2025, 34(12): 127302.
[3] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[4] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[5] Low temperature ferromagnetism in CaCu3Ti4O12
Song Yang(杨松), Xiao-Jing Luo(罗晓婧), Zhi-Ming Shen(申志明), Tian Gao(高湉), Yong-Sheng Liu(刘永生), and Shao-Long Tang(唐少龙). Chin. Phys. B, 2021, 30(9): 098103.
[6] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[7] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[8] LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟). Chin. Phys. B, 2021, 30(10): 100601.
[9] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[10] Improvement of memory characteristics by employing a charge trapping layer with combining bent and flat energy bands
Zhen-Jie Tang(汤振杰), Rong Li(李荣), Xi-Wei Zhang(张希威). Chin. Phys. B, 2020, 29(4): 047701.
[11] Morphological modifications of C60 crystal rods under hydrothermal conditions
Ming-Run Du(杜明润), Shi-Xin Liu(刘士鑫), Jia-Jun Dong(董家君), Ze-Peng Li(李泽朋), Ming-Chao Wang (王明超), Tong Wei(魏通), Qing-Jun Zhou(周青军), Xiong Yang(杨雄), and Peng-fei Shen(申鹏飞). Chin. Phys. B, 2020, 29(12): 128102.
[12] Improved performance of Au nanocrystal nonvolatile memory by N2-plasma treatment on HfO2 blocking layer
Chen Wang(王尘), Yi-Hong Xu(许怡红), Song-Yan Chen(陈松岩), Cheng Li(李成), Jian-Yuan Wang(汪建元), Wei Huang(黄巍), Hong-Kai Lai(赖虹凯), Rong-Rong Guo(郭榕榕). Chin. Phys. B, 2018, 27(6): 067303.
[13] Bias polarity-dependent unipolar switching behavior in NiO/SrTiO3 stacked layer
Xian-Wen Sun(孙献文), Cai-Hong Jia(贾彩虹), Xian-Sheng Liu(刘献省), Guo-Qiang Li(李国强), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2018, 27(4): 047304.
[14] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[15] Low-temperature green synthesis of boron carbide using aloe vera
H V SarithaDevi, M S Swapna, G Ambadas, S Sankararaman. Chin. Phys. B, 2018, 27(10): 107702.
No Suggested Reading articles found!