Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 118201    DOI: 10.1088/1674-1056/ac70b1
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment

Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜)
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
Abstract  Exploring low-cost and high-performance catalysts for oxygen evolution reaction (OER) remains to be a great challenge. Iridium-based perovskite oxide has large potential in OER because of its intrinsic activity and outstanding physicochemical properties. In this study, iridium-doped strontium titanate (Ir-STO) solution is brushed on a Ti sheet by the traditional method to obtain the Ir-STO/Ti electrodes after being calcined at a high temperature. The microstructure and electrocatalysis properties of the Ir-STO are further modified by a facile and scalable NH3-plasma strategy. In addition to the doping of Ir, the NH3 plasma treatment further results in N-doping into Ir-STO, which enriches active species and causes oxygen vacancies near doped sites. The resulting N, Ir-STO/Ti electrode reveals excellent acidic OER activity with the lowest overpotential of 390 mV at 10 mA/cm2 and the smallest Tafel slope of 140 mV/dec after 10-min plasma treatment. Therefore, the great potential of activated N, Ir-STO/Ti is regarded as a catalyst for the OER, and thus making a new opportunity for developing other perovskite catalysts via NH3 plasma treatment.
Keywords:  electrocatalysts      NH3 plasma      oxygen vacancies      N doping  
Received:  07 January 2022      Revised:  30 April 2022      Accepted manuscript online:  18 May 2022
PACS:  82.45.Hk (Electrolysis)  
  82.45.Jn (Surface structure, reactivity and catalysis)  
  52.77.Dq (Plasma-based ion implantation and deposition)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
Fund: Project supported by the Priority Academic Program Development (PAPD) Program of Jiangsu Higher Education Institutions, Jiangsu Province, China and the National Natural Science Foundation of China (Grant No. 11675117).
Corresponding Authors:  Rong-Lei Fan, Yu Xin     E-mail:  rlfan@suda.edu.cn;yuxin@suda.edu.cn

Cite this article: 

Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜) Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment 2022 Chin. Phys. B 31 118201

[1] Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S and Nocera D G 2010 Chem. Rev. 110 6474
[2] Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A and Lewis N S 2010 Chem. Rev. 110 6446
[3] Nathan S L 2006 Proc. Natl. Acad. Sci. USA 103 15729
[4] Cao H, Chen M, Wu L, Hou G, Tang Y and Zheng G 2017 Appl. Surf. Sci. 428 861
[5] Shan J, Guo C, Zhu Y, Chen S, Song L, Jaroniec M, Zheng Y and Qiao S Z 2019 Chem 5 445
[6] Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J and Chen H M 2017 Chem. Soc. Rev. 46 337
[7] Lv H, Wang S, Li J, Shao C, Zhou W, Shen X, Xue M and Zhang C 2020 Appl. Surf. Sci. 514 145943
[8] Reier T, Oezaslan M and Strasser P 2012 ACS Cata. 2 1765
[9] Xu H, Shi Z X, Tong Y X and Li G R 2018 Adv. Mater. 30 1705442
[10] Suntivich J, May K J, Gasteiger H A, Goodenough J B and Shao Horn Y 2011 Science 334 1383
[11] Hardin W G, Mefford J T, Slanac D A, Patel B B, Wang X, Dai S, Zhao X, Ruoff R S, Johnston K P and Stevenson K J 2014 Chem. Mater. 26 3368
[12] Liu Y, Li H J, Zhang Q, Li Y and Liu H T 2013 Chin. Phys. B 22 057201
[13] Seitz Linsey C, Dickens Colin F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang Harold Y, Norskov Jens K and Jaramillo Thomas F 2016 Science 353 1011
[14] Jin C, Cao X, Zhang L, Cong Z and Yang R 2013 J. Power Sources 241 225
[15] Ji Q, Bi L, Zhang J, Cao H and Zhao X S 2020 Int. J. Hydrogen Energy 45 12514
[16] Liang X, Shi L, Liu Y, Chen H, Si R, Yan W, Zhang Q, Li G D, Yang L and Zou X 2019 Angew. Chem. Int. Ed. Engl. 58 7631
[17] Badreldin A, Abusrafa A E and Abdel-Wahab A 2020 Emergent Mater. 3 567
[18] Mefford J T, Rong X, Abakumov A M, Hardin W G, Dai S, Kolpak A M, Johnston K P and Stevenson K J 2016 Nat. Commun. 7 11053
[19] She S, Yu J, Tang W, Zhu Y, Chen Y, Sunarso J, Zhou W and Shao Z 2018 ACS Appl. Mater. Interfaces 10 11715
[20] Sun B, He D, Wang H, Liu J, Ke Z, Cheng L and Xiao X 2021 Chin. Phys. B 30 106102
[21] Liu X, Zhang L, Zheng Y, Guo Z, Zhu Y, Chen H, Li F, Liu P, Yu B, Wang X, Liu J, Chen Y and Liu M 2019 Adv. Sci. 6 1801898
[22] Wang Z, Zhang Y, Neyts E C, Cao X, Zhang X, Jang B W L and Liu C 2018 ACS Catal. 8 2093
[23] Lu Y, Ma A, Yu Y, Tan R, Liu C, Zhang P, Liu D and Gui J 2018 ACS Sustain. Chem. Eng. 7 2906
[24] Ran J, Wang T, Zhang J, Liu Y, Xu C, Xi S and Gao D 2020 Chem. Mater. 32 3439
[25] Xiong J, Zhong H, Li J, Zhang X, Shi J, Cai W, Qu K, Zhu C, Yang Z, Beckman S P and Cheng H 2019 Appl. Catal. B: Environ. 256 117817
[26] Fuertes A 2012 J. Mater. Chem. 22 3293
[27] Fuertes A 2015 Mater. Horiz. 2 453
[28] Marlec F, Le Paven C, Le Gendre L, Benzerga R, Cheviré F, Tessier F, Gam F and Sharaiha A 2017 Surf. Coat. Technol. 324 607
[29] Liu Y, Wang W, Xu X, Marcel Veder J P and Shao Z 2019 J. Mater. Chem. 7 7280
[30] Zhang J, Zhang C, Li W, Guo Q, Gao H, You Y, Li Y, Cui Z, Jiang K C, Long H, Zhang D and Xin S 2018 ACS Appl. Mater. Interfaces 10 5543
[31] Lee Y, Suntivich J, May K J, Perry E E and Shao H Y 2012 J. Phys. Chem. Lett. 3 399
[32] Husein I F, Qin S, Zhou Y Z and Chan C 1997 Nucl. Instrum. Method B 121 226
[33] Yu L, Bati A, Grace T, Batmunkh M and Shapter J 2019 Adv. Energy Mater. 9 1901063
[34] Pansila P P, Kanomata K, Ahmmad B, Kubota S and Hirose F 2015 IEICE T Electron. E98-C 395
[35] Zhao J, Lu G, Wu Y, Zhang P, Yue J, Cheng Z, Zhang J and Kang X 2020 Colloid. Surface A 603 125254
[36] Lan C K, Chuang S I, Bao Q, Liao Y T and Duh J G 2015 J. Power Sources 275 660
[37] Tan X, Chen C, Jin K and Luo B 2011 J. Alloys Compd. 509 L311
[38] Shi X, Zhu H, Du J, Cao L, Wang X and Liang H P 2021 Electrochimica Acta 370 137710
[39] Liu C M, Zu X T and Zhou W L 2007 J. Phys. D: Appl. Phys. 40 7318
[40] Yang X, Zhao F, Yeh Y W, Selinsky R S, Chen Z, Yao N, Tully C G, Ju Y and Koel B E 2019 Nat. Commun. 10 1543
[41] Chen Q, Ozkan A, Chattopadhyay B, Baert K, Poleunis C, Tromont A, Snyders R, Delcorte A, Terryn H and Delplancke Ogletree M P 2019 Langmuir 35 7161
[42] Yu J, Wu X, Guan D, Hu Z, Weng S C, Sun H, Song Y, Ran R, Zhou W, Ni M and Shao Z 2020 Chem. Mater. 32 4509
[43] Anantharaj S, Karthik P E and Kundu S 2015 J. Mater. Chem. A 3 24463
[44] Guo Y, Wang T, Chen J, Zheng J, Li X and Ostrikov K 2018 Adv. Energy Mater. 8 1800085
[45] Li Z, Lv L, Wang J, Ao X, Ruan Y, Zha D, Hong G, Wu Q, Lan Y, Wang C, Jiang J and Liu M 2018 Nano Energy 47 199
[46] He T, Zeng X and Rong S 2020 J. Mater. Chem. A 8 8383
[47] Zhang Y Q, Tao H B, Chen Z, Li M, Sun Y F, Hua B and Luo J L 2019 J. Mater. Chem. A 7 26607
[48] Xinghua C, Lv M, Jin S, Wang H, Chen Y, Ma T, Cui K, Li J, Yong W, Liu Z, Guo Y, Liu Z and Li X 2020 Catal. Sci. Technol. 10 4786
[49] Ma X, Zhou Y, Cao L, Wang K, Deng L, Fan R and Xin Y 2020 Surf. Coat. Technol. 396 125961
[50] Liu Y, Liang X, Chen H, Gao R, Shi L, Yang L and Zou X 2021 Chin. J. Catal. 42 1054
[51] Beknalkar S A, Teli A M, Harale N S, Patil D S, Pawar S A, Shin J C and Patil P S 2021 Appl. Surf. Sci. 546 149102
[52] Xu L K and Scantlebury J D 2003 Corros. Sci. 45 2729
[53] Hu M J, Meng M H, Zhang Q J and N C 2002 Corros. Sci. 44 1655
[54] Zhou X, Zhou J, Huang G, Fan R, Ju S, Mi Z and Shen M 2018 J. Mater. Chem. A 6 20297
[55] Lü G H, Chen H, Wang X Q, Pang H, Zhang G L, Zou B, Lee H J and Yang S Z 2010 Chin. Phys. B 19 085202
[56] Shieh D T and Hwang B J 1993 Electrochimica Acta 38 2239
[57] Da Silva L M, Fernandes K C, De Faria L A and Boodts J F C 2004 Electrochimica Acta 49 4893
[58] Da Silva L M, De Faria L A and Boodts J F C 2002 J. Electroanal. Chem. 532 141
[59] Liu C W, Xu J P, Liu L and Lu H H 2015 Chin. Phys. B 24 127304
[60] Haynes W M 2014 CRC handbook of chemistry and physics, 95th edn. (New York: CRC Press) pp. 1603-1613
[1] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[2] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[3] Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells
Ni Suo(索妮), Longsheng Cao(曹龙生), Xiaoping Qin(秦晓平), and Zhigang Shao(邵志刚). Chin. Phys. B, 2022, 31(12): 128108.
[4] Low temperature ferromagnetism in CaCu3Ti4O12
Song Yang(杨松), Xiao-Jing Luo(罗晓婧), Zhi-Ming Shen(申志明), Tian Gao(高湉), Yong-Sheng Liu(刘永生), and Shao-Long Tang(唐少龙). Chin. Phys. B, 2021, 30(9): 098103.
[5] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[6] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[7] Investigation of active-region doping on InAs/GaSb long wave infrared detectors
Su-Ning Cui(崔素宁), Dong-Wei Jiang(蒋洞微), Ju Sun(孙矩), Qing-Xuan Jia(贾庆轩), Nong Li(李农), Xuan Zhang(张璇), Yong Li(李勇), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2020, 29(4): 048502.
[8] Effect of Mn substitution on superconductivity in iron selenide (Li, Fe)OHFeSe single crystals
Yiyuan Mao(毛义元), Zian Li(李子安), Huaxue Zhou(周花雪), Mingwei Ma(马明伟), Ke Chai(柴可), Shunli Ni(倪顺利), Shaobo Liu(刘少博), Jinpeng Tian(田金鹏), Yulong Huang(黄裕龙), Jie Yuan(袁洁), Fang Zhou(周放), Jianqi Li(李建奇), Kui Jin(金魁), Xiaoli Dong(董晓莉), Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2018, 27(7): 077405.
[9] In situ growth of different numbers of gold nanoparticles on MoS2 with enhanced electrocatalytic activity for hydrogen evolution reaction
Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Chen Fu(付晨). Chin. Phys. B, 2018, 27(6): 068103.
[10] Bias polarity-dependent unipolar switching behavior in NiO/SrTiO3 stacked layer
Xian-Wen Sun(孙献文), Cai-Hong Jia(贾彩虹), Xian-Sheng Liu(刘献省), Guo-Qiang Li(李国强), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2018, 27(4): 047304.
[11] Effect of Mn doping on mechanical properties and electronic structure of WCoB ternary boride by first-principles calculations
Tong Zhang(张桐), Hai-Qing Yin(尹海清), Cong Zhang(张聪), Xuan-Hui Qu(曲选辉), Qing-Jun Zheng(郑清军). Chin. Phys. B, 2018, 27(10): 107101.
[12] Effects of Mn substitution on thermoelectric properties of CuIn1-xMnxTe2
Pengfei Luo(罗鹏飞), Li You(游理), Jiong Yang(杨炯), Juanjuan Xing(邢娟娟), Jiye Zhang(张继业), Chenyang Wang(王晨阳), Xinluo Zhao(赵新洛), Jun Luo(骆军), Wenqing Zhang(张文清). Chin. Phys. B, 2017, 26(9): 097201.
[13] Electrical analysis of inter-growth structured Bi4Ti3O12–Na0.5Bi4.5Ti4O15 ceramics
Xiangping Jiang(江向平), Yalin Jiang(江亚林), Xingan Jiang(江兴安), Chao Chen(陈超), Na Tu(涂娜), Yunjing Chen(陈云婧). Chin. Phys. B, 2017, 26(7): 077701.
[14] Improved photovoltaic effects in Mn-doped BiFeO3 ferroelectric thin films through band gap engineering
Tang-Liu Yan(阎堂柳), Bin Chen(陈斌), Gang Liu(刘钢), Rui-Peng Niu(牛瑞鹏), Jie Shang(尚杰), Shuang Gao(高双), Wu-Hong Xue(薛武红), Jing Jin(金晶), Jiu-Ru Yang(杨九如), Run-Wei Li(李润伟). Chin. Phys. B, 2017, 26(6): 067702.
[15] Optimize the thermoelectric performance of CdO ceramics by doping Zn
Xin-Yu Zha(查欣雨), Lin-Jie Gao(高琳洁), Hong-Chang Bai(白洪昌), Jiang-Long Wang(王江龙), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2017, 26(10): 107202.
No Suggested Reading articles found!