Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128102    DOI: 10.1088/1674-1056/abc0d8
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Morphological modifications of C60 crystal rods under hydrothermal conditions

Ming-Run Du(杜明润)1, Shi-Xin Liu(刘士鑫)1, Jia-Jun Dong(董家君)2, Ze-Peng Li(李泽朋)1,†, Ming-Chao Wang (王明超)1, Tong Wei(魏通)1, Qing-Jun Zhou(周青军)1, Xiong Yang(杨雄)1, and Peng-fei Shen(申鹏飞)3
1 College of Science, Civil Aviation University of China, Tianjin 300300, China; 2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 3 Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 519055, China
Abstract  We observed morphological modification of rod-shaped C60 solvate crystals using a facile hydrothermal method. The initial C60 rods were changed from smooth rods to rough rods, porous rods or pieces under different hydrothermal conditions. During the hydrothermal treatment, the initial samples underwent a decomposition-recrystallization process, which can be tuned by the content of alcohol in the hydrothermal solution, thereby leading to modification of the morphological properties of the initial C60 rods. In addition, the rough and porous C60 rods prepared in our work exhibit excellent photoluminescence intensities that are approximately 7 and 3 times higher than those of pure C60 powders, respectively. Our results suggest that the hydrothermal method is a potential route for fabricating fullerene materials with controllable morphologies and novel functions.
Keywords:  fullerene crystals      morphological modification      porous materials      hydrothermal method  
Received:  08 June 2020      Revised:  28 August 2020      Accepted manuscript online:  14 October 2020
PACS:  81.05.ub (Fullerenes and related materials)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.05.Rm (Porous materials; granular materials)  
  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804384, 51802343, and 51772326), the Fundamental Research Funds for the Central Universities, China (Grant No. 3122018L006), the Scientific Research Project of Tianjin Education Commission (Grant No. 2019ZD19), the National Natural Science Foundation of China and the Civil Aviation Administration of China (Grant No. U1933109), and Open Project of State Key Laboratory of Superhard Materials (Jilin University) (Grant No. 201803).
Corresponding Authors:  Corresponding author. E-mail: li_zepeng@163.com   

Cite this article: 

Ming-Run Du(杜明润), Shi-Xin Liu(刘士鑫), Jia-Jun Dong(董家君), Ze-Peng Li(李泽朋), Ming-Chao Wang (王明超), Tong Wei(魏通), Qing-Jun Zhou(周青军), Xiong Yang(杨雄), and Peng-fei Shen(申鹏飞) Morphological modifications of C60 crystal rods under hydrothermal conditions 2020 Chin. Phys. B 29 128102

[1] Briseno A L, Mannsfeld S C B, Ling M M, Liu S, Tseng R J, Reese C, Roberts M E, Yang Y, Wudl F and Bao Z Nature 444 913 DOI: 10.1038/nature054272006
[2] Dresselhaus M S, Dresselhaus G and Eklund P C1996 Science of Fullerenes and Carbon Nanotubes (San Diego: Academic Press) pp. 437-438
[3] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M and Heeger A J Science 317 222 DOI: 10.1126/science.11417112007
[4] Dennler G, Scharber M C and Brabec C J Adv. Mater. 21 1323 DOI: 10.1002/adma.v21:132009
[5] Lai Y Y, Cheng Y J and Hsu C S Energy Environ. Sci. 7 1866 DOI: 10.1039/c3ee43080d2014
[6] Deng L L, Xie S Y and Gao F Adv. Electron. Mater. 4 1700435 DOI: 10.1002/aelm.2017004352018
[7] Sun X N, Velez S, Atxabal A, Bedoya-Pinto A, Parui S, Zhu X, Llopis R, Casanova F and Hueso L E Science 357 677 DOI: 10.1126/science.aan53482017
[8] Anthony J E, Facchetti A, Heeney M, Marder S R and Zhan X W Adv. Mater. 22 3876 DOI: 10.1002/adma.2009036282010
[9] Li H Y, Tee B C K, Cha J J, Cui Y, Chung J W, Lee S Y and Bao Z N J. Am. Chem. Soc. 134 2760 DOI: 10.1021/ja210430b2012
[10] Yuan Y Y, Han S, Grozea D and Lu Z H Appl. Phys. Lett. 88 093503 DOI: 10.1063/1.21808762006
[11] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C Chem. Soc. Rev. 42 2824 DOI: 10.1039/C2CS35335K2013
[12] Shi X L, Liu S R, Sun Y, Liang J J and Chen Y S Adv. Funct. Mater. 28 1800850 DOI: 10.1002/adfm.v28.222018
[13] Yao M G, Du M R and Liu B B Chin. Phys. B 22 098109 DOI: 10.1088/1674-1056/22/09/0981092013
[14] Wang L, Liu B B, Liu D, Yao M G, Hou Y Y, Yu S D, Cui T, Li D L, Zou G T, Iwasiewicz A and Sundqvist B Adv. Mater. 18 1883 DOI: 10.1002/(ISSN)1521-40952006
[15] Vimalanathan K, Shrestha R G, Zhang Z, Zou J, Nakayama T and Raston C L Angew. Chem. Int. Ed. 56 8398 DOI: 10.1002/anie.2016086732017
[16] Briseno A L, Mannsfeld S C B M, Ling M, Liu S, R.TsengJ, Reese C, Roberts M E, Yang Y, Wudl F and Bao Z Nature 444 913 DOI: 10.1038/nature054272006
[17] Sathish M, Miyazawa K, Hill J P and Ariga K J. Am. Chem. Soc. 131 6372 DOI: 10.1021/ja902061r2009
[18] Kim J, Park C, Song I, Lee M, Kim H and Choi H C Sci. Rep. 6 32205 DOI: 10.1038/srep322052016
[19] Nair V S, Mukhopadhyay R D, Saeki A, Seki S and Ajayaghosh A Sci. Adv. 2 e1600142 DOI: 10.1126/sciadv.16001422016
[20] Liu H B, Li Y L, Jiang L, Luo H Y, Xiao S Q, Fang H J, Li H M, Zhu D B, Yu D P and Xiang B J. Am. Chem. Soc. 124 13370 DOI: 10.1021/ja02805272002
[21] Yao M G, Andersson B M, Stenamrk P, Sundqvist B, Liu B B and Wagberg T Carbon 47 1181 DOI: 10.1016/j.carbon.2009.01.0102009
[22] Wang L, Liu B B, Yu S D, Yao M G, Liu D D, Hou Y Y, Cui T and Zou G T Chem. Mater. 18 4190 DOI: 10.1021/cm060997q2006
[23] Kim J, Park C and Choi H C Chem. Matter 27 2408 DOI: 10.1021/cm50444782015
[24] Sathish M and Miyazawa K J. Am. Chem. Soc. 129 13816 DOI: 10.1021/ja076251q2007
[25] Tan Z Q, Masuhar A, Kasai H, Nakanishi H and Oikawa H Carbon 64 370 DOI: 10.1016/j.carbon.2013.07.0872013
[26] Bairi P, Tsuruoka T, Acharya S, Ji Q M, Hill J P, Ariga K, Yamauchi Y and Shrestha L K Mater. Horiz. 5 285 DOI: 10.1039/C7MH00954B2018
[27] Park C, Song H J and Choi H C Chem. Commun. 2009 4803 DOI: 10.1039/B909888G2009
[28] Wei L, Yao J N and Fu H B ACS Nano 7 7573 DOI: 10.1021/nn402889h2013
[29] Masuhara A, Tan Z Q, Ikeshima M, Sato T, Kasai H, Oikawa H and Nakanishi H CrystEngComm 14 7787 DOI: 10.1039/c2ce25798j2012
[30] Marcus Y, Smith A L, Korobov M V, Mirakyan A L, Avramenko N V and Stukalin E B J. Phys. Chem. B 105 2499 DOI: 10.1021/jp00237202001
[31] Sivaraman N, Dhamodaran R, Kaliappan I, Srinivasan T G, Vasudeva Rao P R P and Mathews C K C Fullerene Sci. Technol. 2 233 DOI: 10.1080/153638394080095491994
[32] Benzigar M, Joseph S, Ilbeygi H, Park D H, Sarkar S, Chandra G, Umapathy S, Srinivasan S, Talapaneni S N and Vinu A Angew. Chem. Int. Ed. 57 569 DOI: 10.1002/anie.2017108882018
[33] Huang H, Zhu W J, Tao X Y, Xia Y, Yu Z Y, Fang J W, Gan Y P and Zhang W K ACS Appl. Mater. Interfaces 4 5974 DOI: 10.1021/am301641y2012
[34] Du M R, Yao M G, Dong J J, Ge P, Dong Q, Kováts è, Pekker S, Chen S L, Liu R, Liu B, Cui T, Sundqvist B and Liu B B Adv. Mater. 30 1706916 DOI: 10.1002/adma.v30.222018
[35] Dong J J, Yao Z, Yao M G, Li R, Hu K, Zhu L Y, Wang Y, Sun H H, Sundqvist B, Yang K and Liu B B Phys. Rev. Lett. 124 065701 DOI: 10.1103/PhysRevLett.124.0657012020
[36] Bethune D S, Meijer G, Tang W C and Rosen H J Chem. Phys. Lett. 179 181 DOI: 10.1016/0009-2614(91)90312-W1991
[37] Wang K A, Wang Y, Zhou P, Holden J M, Ren S L, Hager G T, Ni H F, Eklund P C, Dresselhaus G and Dresselhaus M S Phys. Rev. B 45 1995(R) DOI: 10.1103/PhysRevB.45.19551992
[38] Suchanek W L, Libera J A, Gogotsi Y and Yoshimura M J. Solid State Chem. 160 184 DOI: 10.1006/jssc.2001.92202001
[39] Liu D D, Wang L, Cui W, Yao M G, Li Q J, Li Z P, Zou B, Cui T, Liu B B and Sundqvist B Diam. Relat. Mater. 20 178 DOI: 10.1016/j.diamond.2010.11.0292011
[40] Minato J I, Miyazawa K Carbon 43 2837 DOI: 10.1016/j.carbon.2005.06.0132005
[41] Penterman S J, Singh A, Zipfel W R and Liddell Watson C M Adv. Opt. Mater. 2 1024 DOI: 10.1002/adom.2014002662014
[42] Miyazawa K C and Hotta K J Nanopart. Res. 13 5739 DOI: 10.1007/s11051-010-0132-y2011
[1] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[2] LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟). Chin. Phys. B, 2021, 30(10): 100601.
[3] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[4] Low-temperature green synthesis of boron carbide using aloe vera
H V SarithaDevi, M S Swapna, G Ambadas, S Sankararaman. Chin. Phys. B, 2018, 27(10): 107702.
[5] Statistical second-order two-scale analysis and computation for heat conduction problem with radiation boundary condition in porous materials
Zhi-Qiang Yang(杨志强), Shi-Wei Liu(刘世伟), Yi Sun(孙毅). Chin. Phys. B, 2016, 25(9): 090202.
[6] A study of transition from n-to p-type based on hexagonal WO3 nanorods sensor
Wu Ya-Qiao (武雅乔), Hu Ming (胡明), Wei Xiao-Ying (韦晓莹). Chin. Phys. B, 2014, 23(4): 040704.
[7] Second-order two-scale computations for conductive–radiative heat transfer problem in periodic porous materials
Yang Zhi-Qiang (杨志强), Cui Jun-Zhi (崔俊芝), Li Bo-Wen (李博文). Chin. Phys. B, 2014, 23(3): 030203.
[8] Optical and magnetic properties of porous anodic alumina films embedded with Co nanowires
Zhang Jing-Jing (张敬晶), Li Zi-Yue (李子岳), Zhang Hui-Min (张惠敏), Hou Xue (侯雪), Sun Hui-Yuan (孙会元). Chin. Phys. B, 2013, 22(8): 087805.
[9] Microstructure and optical properties of nitrogen-doped ZnO film
Zhao Xian-Wei (赵显伟), Gao Xiao-Yong (郜小勇), Chen Xian-Mei (陈先梅), Chen Chao (陈超), Zhao Meng-Ke (赵孟珂 ). Chin. Phys. B, 2013, 22(2): 024202.
[10] Hydrothermal synthesis of hexagonal-phase NaYF4: Er, Yb with different shapes for application as photovoltaic up-converters
Wang Dong-Feng (王东丰), Zhang Xiao-Dan (张晓丹), Liu Yong-Juan (刘永娟), Wu Chun-Ya (吴春亚), Zhang Cun-Shan (张存善), Wei Chang-Chun (魏长春), Zhao Ying (赵颖). Chin. Phys. B, 2013, 22(2): 027801.
[11] Growth of monodisperse nanospheres of MnFe2O4 with enhanced magnetic and optical properties
M. Yasir Rafique, Pan Li-Qing (潘礼庆), Qurat-ul-ain Javed, M. Zubair Iqbal, Qiu Hong-Mei (邱红梅), M. Hassan Farooq, Guo Zhen-Gang (郭振刚), M. Tanveer. Chin. Phys. B, 2013, 22(10): 107101.
[12] Effect of Sb-doping on the morphology and the dielectric properties of chrysanthemum-like ZnO nanowire clusters
Yan Jun-Feng (闫军锋), You Tian-Gui (游天桂), Zhang Zhi-Yong (张志勇), Tian Jiang-Xiao (田江晓), Yun Jiang-Ni (贠江妮), Zhao Wu (赵武). Chin. Phys. B, 2012, 21(9): 098001.
[13] Ag-doped ZnO nanorods synthesized by two-step method
Chen Xian-Mei (陈先梅), Ji Yong (冀勇), Gao Xiao-Yong (郜小勇), Zhao Xian-Wei (赵显伟 ). Chin. Phys. B, 2012, 21(11): 116801.
[14] Effect of Mn-doping on the growth mechanism and electromagnetic properties of chrysanthemum-like ZnO nanowire clusters
Yan Jun-Feng(闫军锋), You Tian-Gui(游天桂), Zhang Zhi-Yong(张志勇), Tian Jiang-Xiao(田江晓), Yun Jiang-Ni(贠江妮), and Zhao Wu(赵武) . Chin. Phys. B, 2011, 20(4): 048102.
[15] Hydrothermal synthesis and chromic properties of hexagonal WO3 nanowires
Yuan Hua-Jun(袁华军), Chen Ya-Qi(陈亚琦), Yu Fang(余芳), Peng Yue-Hua(彭跃华), He Xiong-Wu(何熊武), Zhao Ding(赵丁), and Tang Dong-Sheng(唐东升). Chin. Phys. B, 2011, 20(3): 036103.
No Suggested Reading articles found!