Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 098103    DOI: 10.1088/1674-1056/abeef0
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Low temperature ferromagnetism in CaCu3Ti4O12

Song Yang(杨松)1, Xiao-Jing Luo(罗晓婧)1,†, Zhi-Ming Shen(申志明)1, Tian Gao(高湉)1, Yong-Sheng Liu(刘永生)1, and Shao-Long Tang(唐少龙)2,‡
1 Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai 200090, China;
2 Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  The low-temperature magnetic order behaviors of perovskite oxide CaCu3Ti4O12 (CCTO) ceramics prepared by different methods are discussed. X-ray diffraction, scanning electron microscope, x-ray photoelectron spectroscopy, and direct current (DC) magnetization are used to characterize the structures, microscopic morphologies, valence states, and magnetic properties of the samples. The results show that the magnetic behaviors of CCTO ceramics are very sensitive to the preparation process. The quenched CCTO ceramic and CCTO powders grown in a molten salt crystal, which contain much more oxygen vacancies and Ti3+, show the coexistence of weak ferromagnetic order and antiferromagnetic order below the Neel temperature. It suggests that the bound magnetopolaron formed by oxygen vacancies and Ti3+ ion composite defects are responsible for the weak ferromagnetic order at low temperature.
Keywords:  CaCu3Ti4O12      oxygen vacancies      magnetic ordering  
Received:  31 December 2020      Revised:  14 February 2021      Accepted manuscript online:  16 March 2021
PACS:  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504227 and 51971128), the Program of Shanghai Academic/Technology Research Leader, China (Grant No. 20XD1401800), and the Project of the Science and Technology Commission of Shanghai Municipality, China (Grant No. 19020501000).
Corresponding Authors:  Xiao-Jing Luo, Shao-Long Tang     E-mail:  xiaojing_luo@163.com;tangsl@nju.edu.cn

Cite this article: 

Song Yang(杨松), Xiao-Jing Luo(罗晓婧), Zhi-Ming Shen(申志明), Tian Gao(高湉), Yong-Sheng Liu(刘永生), and Shao-Long Tang(唐少龙) Low temperature ferromagnetism in CaCu3Ti4O12 2021 Chin. Phys. B 30 098103

[1] Subramanian M, Li D, Duan N, Reisner B and Sleight A 2000 J. Solid State Chem. 151 323
[2] Homes C, Vogt T, Shapiro S, Wakimoto S and Ramirez A 2001 Science 293 673
[3] Cheng P, Cao Z, Zhou M, Wang Q, Li S and Li J 2019 Ceram. Int. 45 15320
[4] Li G L, Yin Z and Zhang M S 2005 Phys. Lett. A 344 238
[5] Gaâbel F, Khlifi M, Hamdaoui N, Beji L, Taibi K and Dhahri J 2019 J. Mater. Sci.-Mater. Electron. 30 148231
[6] Kadyrova N, Mel'nikova N, Ustinova I and Zainulin Y G 2016 Inorg. Mater. 52 1051
[7] Fang T T and Mei L T 2007 J. Am. Ceram. Soc. 90 638
[8] Ni L and Chen X M 2007 Appl. Phys. Lett. 91 122905
[9] Lunkenheimer P, Fichtl R, Ebbinghaus S G and Loidl A 2004 Phys. Rev. B 70 172102
[10] Sinclair D C, Adams T B, Morrison F D and West A R 2002 Appl. Phys. Lett. 80 2153
[11] Ma Y, Liu J, Gao C, Mei W, White A D and Rasty J 2006 Appl. Phys. Lett. 88 191903
[12] Jumpatam J, Putasaeng B, Yamwong T, Thongbai P and Maensiri S 2013 Ceram. Int. 39 1057
[13] Jesurani S, Kanagesan S, Hashim M and Ismail I 2013 J. Alloys Compd. 551 456
[14] Thongbai P, Jumpatam J, Yamwong T and Maensiri S 2012 J. Eur. Ceram. Soc. 32 2423
[15] Li M, Chen X, Zhang D, Liu Q and Li C 2015 Ceram. Int. 41 14854
[16] Hu W, Liu Y, Withers R L, Frankcombe T J, Norén L, Snashall A, Kitchin M, Smith P, Gong B and Chen H 2013 Nat. Mater. 12 821
[17] Luo X, Bärner K, Zhang Y, Gao T, Yang C and Liu Y 2018 Ceram. Int. 44 12007
[18] Luo X, Zhang Y, Xu D, Chen S, Wang Y, Chai Y, Liu Y, Tang S, Yang C and Bärner K 2019 Ceram. Int. 45 12994
[19] Liu Y, Feng S, Li Z, Zhang L, Wang G, Chen W, Wang T and Zhong W 2016 RSC Adv. 6 57013
[20] Wang X, Song Y, Tao L, Feng J, Sui Y, Tang J, Song B, Wang Y, Wang Y and Zhang Y 2014 Appl. Phys. Lett. 105 262402
[21] Singhal R, Kumar S, Kumari P, Xing Y and Saitovitch E 2011 Appl. Phys. Lett. 98 092510
[22] Sarin N, Mishra M, Gupta G, Arora M and Luthra V 2018 Physica Status Solidi (b) 255 1700683
[23] Parras M, Varela A, Corteés-Gil R, Boulahya K, Hernando A and González-Calbet J M 2013 J. Phys. Chem. Lett. 4 2171
[24] Song Y, Wang X, Tao L, Song B, Zhang L, Zhang Y, Sui Y, Liu Z, Tang J and Han X 2017 J. Alloys Compd. 694 929
[25] Bapna K, Choudhary R, Pandey S, Phase D, Sharma S and Knobel M 2011 Appl. Phys. Lett. 99 112502
[26] Kim Y, Wakimoto S, Shapiro S, Gehring P and Ramirez A 2002 Solid State Commun. 121 625
[27] Koitzsch A, Blumberg G, Gozar A, Dennis B, Ramirez A, Trebst S and Wakimoto S 2002 Phys. Rev. B 65 052406
[28] Pires M, Israel C, Iwamoto W, Urbano R, Agüero O, Torriani I, Rettori C, Pagliuso P, Walmsley L and Le Z 2006 Phys. Rev. B 73 224404
[29] Fernandez J F, Leret P, Romero J J, De Frutos J, De La Rubia Má, Martín-González M S, Costa-Krämer J L, Fierro J L G, Quesada A and García M 2009 J. Am. Ceram. Soc. 92 2311
[30] Pansara P, Raval P, Vasoya N, Dolia S and Modi K 2018 PCCP 20 1914
[31] Raval P, Pansara P, Makadiya A, Vasoya N, Dolia S and Modi K 2018 Ceram. Int. 44 17667
[32] Mu C, Song Y, Wang H and Wang X 2015 J. Appl. Phys. 117 17B723
[33] Shi J, Chang Y, Tang Y, Wang X, Yao W, Yue Z, Minhas B and Cao J 2020 Ceram. Int. 46 5360
[34] Maity S, Samanta M, Sen A and Chattopadhyay K K 2019 J. Solid State Chem. 269 600
[35] Hailili R, Wang Z Q, Li Y, Wang Y, Sharma V K, Gong X Q and Wang C 2018 Appl. Catal B-Environ. 221 422
[36] Ghosh S and Nambissan P 2019 J. Solid State Chem. 275 174
[37] Salameh B, Alsmadi A and Shatnawi M 2020 J. Alloys Compd. 835 155287
[38] Mozzati M C, Azzoni C B, Capsoni D, Bini M and Massarotti V 2003 J. Phys.: Condens. Matter 15 7365
[39] Grubbs R K, Venturini E, Clem P, Richardson J, Tuttle B and Samara G 2005 Phys. Rev. B 72 104111
[40] Shimakawa Y 2008 lnorg. Chem. 47 8562
[41] Krohns S, Lu J, Lunkenheimer P, Brize V, Autret-Lambert C, Gervais M, Gervais F, Bouree F, Porcher F and Loidl A 2009 Eur. Phys. J. B 72 173
[42] Wang B, Gong L, Wang S, Zhou Z and Ma G 2015 Int. J. Appl. Ceram. Tec. 12 157
[43] Wang J, Lu Z, Deng T, Zhong C and Chen Z 2018 J. Eur. Ceram. Soc. 38 3505
[44] Barad D, Meshiya U, Joshi N, Mange P, Raval P, Kumar S, Singhal R, Dolia S and Modi K 2020 Solid State Sci. 99 106070
[45] Wang Z Z, Zhang J M, Huang Z G and Lin W X 2011 Chin. Phys. B 20 027103
[46] Ding B F and Zhou S Q 2011 Chin. Phys. B 20 127701
[47] Coey J, Venkatesan M and Fitzgerald C 2005 Nat. Mater. 4 173
[48] Khare N, Kappers M J, Wei M, Blamire M G and MacManus-Driscoll J L 2006 Adv. Mater. 18 1449
[49] Griffin K, Pakhomov A, Wang C, Heald S and Krishnan K M 2005 Phys. Rev. Lett. 94 157204
[50] Singhal R, Kumar S, Kumari P, Xing Y and Saitovitch E 2011 Appl. Phys. Lett. 98 092510
[1] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[2] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[3] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[4] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[5] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[6] A novel diluted magnetic semiconductor (Ca,Na)(Zn,Mn)2Sb2 with decoupled charge and spin dopings
Yilun Gu(顾轶伦), Haojie Zhang(张浩杰), Rufei Zhang(张茹菲), Licheng Fu(傅立承), Kai Wang(王恺), Guoxiang Zhi(智国翔), Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2020, 29(5): 057507.
[7] Bias polarity-dependent unipolar switching behavior in NiO/SrTiO3 stacked layer
Xian-Wen Sun(孙献文), Cai-Hong Jia(贾彩虹), Xian-Sheng Liu(刘献省), Guo-Qiang Li(李国强), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2018, 27(4): 047304.
[8] Electrical analysis of inter-growth structured Bi4Ti3O12–Na0.5Bi4.5Ti4O15 ceramics
Xiangping Jiang(江向平), Yalin Jiang(江亚林), Xingan Jiang(江兴安), Chao Chen(陈超), Na Tu(涂娜), Yunjing Chen(陈云婧). Chin. Phys. B, 2017, 26(7): 077701.
[9] Identification of surface oxygen vacancy-related phonon-plasmon coupling in TiO2 single crystal
Jun-Hong Guo(郭俊宏), Ting-Hui Li(李廷会), Fang-Ren Hu(胡芳仁), Li-Zhe Liu(刘力哲). Chin. Phys. B, 2016, 25(12): 127103.
[10] Structures and electrical properties of pure and vacancy-included ZnO NWs of different sizes
Yu Xiao-Xia (于晓霞), Zhou Yan (周彦), Liu Jia (刘甲), Jin Hai-Bo (金海波), Fang Xiao-Yong (房晓勇), Cao Mao-Sheng (曹茂盛). Chin. Phys. B, 2015, 24(12): 127307.
[11] Transient competition between photocatalysis and carrier recombination in TiO2 nanotube film loaded with Au nanoparticles
Shao Zhu-Feng (邵珠峰), Yang Yan-Qiang (杨延强), Liu Shu-Tian (刘树田), Wang Qiang (王强). Chin. Phys. B, 2014, 23(9): 096102.
[12] Spin, charge, and orbital orderings in iron-based superconductors
Jiang Qing (江庆), Kang Yao-Tai (康耀太), Yao Dao-Xin (姚道新). Chin. Phys. B, 2013, 22(8): 087402.
[13] Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals
Li Dong-Xiang (李东翔), Qin Xiu-Bo (秦秀波), Zheng Li-Rong (郑黎荣), Li Yu-Xiao (李玉晓), Cao Xing-Zhong (曹兴忠), Li Zhuo-Xin (李卓昕), Yang Jing (杨静), Wang Bao-Yi (王宝义). Chin. Phys. B, 2013, 22(3): 037504.
[14] High-mobility two-dimensional electron gases at oxide interfaces:Origin and opportunities
Chen Yun-Zhong (陈允忠), Nini Pryds, Sun Ji-Rong (孙继荣), Shen Bao-Gen (沈保根), Søren Linderoth. Chin. Phys. B, 2013, 22(11): 116803.
[15] Influence of the Jahn–Teller distortion on magnetic ordering in TbMn1-xFexO3
Jin Jin-Ling (靳金玲), Zhang Xiang-Qun (张向群), Li Guo-Ke (李国科), Cheng Zhao-Hua (成昭华). Chin. Phys. B, 2012, 21(10): 107501.
No Suggested Reading articles found!