INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Low temperature ferromagnetism in CaCu3Ti4O12 |
Song Yang(杨松)1, Xiao-Jing Luo(罗晓婧)1,†, Zhi-Ming Shen(申志明)1, Tian Gao(高湉)1, Yong-Sheng Liu(刘永生)1, and Shao-Long Tang(唐少龙)2,‡ |
1 Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai 200090, China; 2 Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and Department of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract The low-temperature magnetic order behaviors of perovskite oxide CaCu3Ti4O12 (CCTO) ceramics prepared by different methods are discussed. X-ray diffraction, scanning electron microscope, x-ray photoelectron spectroscopy, and direct current (DC) magnetization are used to characterize the structures, microscopic morphologies, valence states, and magnetic properties of the samples. The results show that the magnetic behaviors of CCTO ceramics are very sensitive to the preparation process. The quenched CCTO ceramic and CCTO powders grown in a molten salt crystal, which contain much more oxygen vacancies and Ti3+, show the coexistence of weak ferromagnetic order and antiferromagnetic order below the Neel temperature. It suggests that the bound magnetopolaron formed by oxygen vacancies and Ti3+ ion composite defects are responsible for the weak ferromagnetic order at low temperature.
|
Received: 31 December 2020
Revised: 14 February 2021
Accepted manuscript online: 16 March 2021
|
PACS:
|
81.40.Rs
|
(Electrical and magnetic properties related to treatment conditions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504227 and 51971128), the Program of Shanghai Academic/Technology Research Leader, China (Grant No. 20XD1401800), and the Project of the Science and Technology Commission of Shanghai Municipality, China (Grant No. 19020501000). |
Corresponding Authors:
Xiao-Jing Luo, Shao-Long Tang
E-mail: xiaojing_luo@163.com;tangsl@nju.edu.cn
|
Cite this article:
Song Yang(杨松), Xiao-Jing Luo(罗晓婧), Zhi-Ming Shen(申志明), Tian Gao(高湉), Yong-Sheng Liu(刘永生), and Shao-Long Tang(唐少龙) Low temperature ferromagnetism in CaCu3Ti4O12 2021 Chin. Phys. B 30 098103
|
[1] Subramanian M, Li D, Duan N, Reisner B and Sleight A 2000 J. Solid State Chem. 151 323 [2] Homes C, Vogt T, Shapiro S, Wakimoto S and Ramirez A 2001 Science 293 673 [3] Cheng P, Cao Z, Zhou M, Wang Q, Li S and Li J 2019 Ceram. Int. 45 15320 [4] Li G L, Yin Z and Zhang M S 2005 Phys. Lett. A 344 238 [5] Gaâbel F, Khlifi M, Hamdaoui N, Beji L, Taibi K and Dhahri J 2019 J. Mater. Sci.-Mater. Electron. 30 148231 [6] Kadyrova N, Mel'nikova N, Ustinova I and Zainulin Y G 2016 Inorg. Mater. 52 1051 [7] Fang T T and Mei L T 2007 J. Am. Ceram. Soc. 90 638 [8] Ni L and Chen X M 2007 Appl. Phys. Lett. 91 122905 [9] Lunkenheimer P, Fichtl R, Ebbinghaus S G and Loidl A 2004 Phys. Rev. B 70 172102 [10] Sinclair D C, Adams T B, Morrison F D and West A R 2002 Appl. Phys. Lett. 80 2153 [11] Ma Y, Liu J, Gao C, Mei W, White A D and Rasty J 2006 Appl. Phys. Lett. 88 191903 [12] Jumpatam J, Putasaeng B, Yamwong T, Thongbai P and Maensiri S 2013 Ceram. Int. 39 1057 [13] Jesurani S, Kanagesan S, Hashim M and Ismail I 2013 J. Alloys Compd. 551 456 [14] Thongbai P, Jumpatam J, Yamwong T and Maensiri S 2012 J. Eur. Ceram. Soc. 32 2423 [15] Li M, Chen X, Zhang D, Liu Q and Li C 2015 Ceram. Int. 41 14854 [16] Hu W, Liu Y, Withers R L, Frankcombe T J, Norén L, Snashall A, Kitchin M, Smith P, Gong B and Chen H 2013 Nat. Mater. 12 821 [17] Luo X, Bärner K, Zhang Y, Gao T, Yang C and Liu Y 2018 Ceram. Int. 44 12007 [18] Luo X, Zhang Y, Xu D, Chen S, Wang Y, Chai Y, Liu Y, Tang S, Yang C and Bärner K 2019 Ceram. Int. 45 12994 [19] Liu Y, Feng S, Li Z, Zhang L, Wang G, Chen W, Wang T and Zhong W 2016 RSC Adv. 6 57013 [20] Wang X, Song Y, Tao L, Feng J, Sui Y, Tang J, Song B, Wang Y, Wang Y and Zhang Y 2014 Appl. Phys. Lett. 105 262402 [21] Singhal R, Kumar S, Kumari P, Xing Y and Saitovitch E 2011 Appl. Phys. Lett. 98 092510 [22] Sarin N, Mishra M, Gupta G, Arora M and Luthra V 2018 Physica Status Solidi (b) 255 1700683 [23] Parras M, Varela A, Corteés-Gil R, Boulahya K, Hernando A and González-Calbet J M 2013 J. Phys. Chem. Lett. 4 2171 [24] Song Y, Wang X, Tao L, Song B, Zhang L, Zhang Y, Sui Y, Liu Z, Tang J and Han X 2017 J. Alloys Compd. 694 929 [25] Bapna K, Choudhary R, Pandey S, Phase D, Sharma S and Knobel M 2011 Appl. Phys. Lett. 99 112502 [26] Kim Y, Wakimoto S, Shapiro S, Gehring P and Ramirez A 2002 Solid State Commun. 121 625 [27] Koitzsch A, Blumberg G, Gozar A, Dennis B, Ramirez A, Trebst S and Wakimoto S 2002 Phys. Rev. B 65 052406 [28] Pires M, Israel C, Iwamoto W, Urbano R, Agüero O, Torriani I, Rettori C, Pagliuso P, Walmsley L and Le Z 2006 Phys. Rev. B 73 224404 [29] Fernandez J F, Leret P, Romero J J, De Frutos J, De La Rubia Má, Martín-González M S, Costa-Krämer J L, Fierro J L G, Quesada A and García M 2009 J. Am. Ceram. Soc. 92 2311 [30] Pansara P, Raval P, Vasoya N, Dolia S and Modi K 2018 PCCP 20 1914 [31] Raval P, Pansara P, Makadiya A, Vasoya N, Dolia S and Modi K 2018 Ceram. Int. 44 17667 [32] Mu C, Song Y, Wang H and Wang X 2015 J. Appl. Phys. 117 17B723 [33] Shi J, Chang Y, Tang Y, Wang X, Yao W, Yue Z, Minhas B and Cao J 2020 Ceram. Int. 46 5360 [34] Maity S, Samanta M, Sen A and Chattopadhyay K K 2019 J. Solid State Chem. 269 600 [35] Hailili R, Wang Z Q, Li Y, Wang Y, Sharma V K, Gong X Q and Wang C 2018 Appl. Catal B-Environ. 221 422 [36] Ghosh S and Nambissan P 2019 J. Solid State Chem. 275 174 [37] Salameh B, Alsmadi A and Shatnawi M 2020 J. Alloys Compd. 835 155287 [38] Mozzati M C, Azzoni C B, Capsoni D, Bini M and Massarotti V 2003 J. Phys.: Condens. Matter 15 7365 [39] Grubbs R K, Venturini E, Clem P, Richardson J, Tuttle B and Samara G 2005 Phys. Rev. B 72 104111 [40] Shimakawa Y 2008 lnorg. Chem. 47 8562 [41] Krohns S, Lu J, Lunkenheimer P, Brize V, Autret-Lambert C, Gervais M, Gervais F, Bouree F, Porcher F and Loidl A 2009 Eur. Phys. J. B 72 173 [42] Wang B, Gong L, Wang S, Zhou Z and Ma G 2015 Int. J. Appl. Ceram. Tec. 12 157 [43] Wang J, Lu Z, Deng T, Zhong C and Chen Z 2018 J. Eur. Ceram. Soc. 38 3505 [44] Barad D, Meshiya U, Joshi N, Mange P, Raval P, Kumar S, Singhal R, Dolia S and Modi K 2020 Solid State Sci. 99 106070 [45] Wang Z Z, Zhang J M, Huang Z G and Lin W X 2011 Chin. Phys. B 20 027103 [46] Ding B F and Zhou S Q 2011 Chin. Phys. B 20 127701 [47] Coey J, Venkatesan M and Fitzgerald C 2005 Nat. Mater. 4 173 [48] Khare N, Kappers M J, Wei M, Blamire M G and MacManus-Driscoll J L 2006 Adv. Mater. 18 1449 [49] Griffin K, Pakhomov A, Wang C, Heald S and Krishnan K M 2005 Phys. Rev. Lett. 94 157204 [50] Singhal R, Kumar S, Kumari P, Xing Y and Saitovitch E 2011 Appl. Phys. Lett. 98 092510 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|