|
|
|
Doping dependence of resistivity, upper critical field and its anisotropy in overdoped Ba1-xKxFe2As2 (x = 0.6-1) single crystals |
| Ke Shi(史可)1,2, Wenshan Hong(洪文山)3, Yang Li(李阳)3,4, Minjie Zhang(张敏杰)1,2, Yongqi Han(韩永琦)1,2, Yu Zhao(赵宇)1,2, Jiating Wu(吴嘉挺)1,5, Ze Wang(王泽)1, Langsheng Ling(凌浪生)1, Chuanying Xi(郗传英)1, Li Pi(皮雳)1, Huiqian Luo(罗会仟)3,†, and Zhaosheng Wang(王钊胜)1,‡ |
1 Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 5 Electronic and Mechanical Engineering, Fujian Polytechnic Normal University, Fuzhou 350300, China |
|
|
|
|
Abstract Temperature-dependent resistivity, upper critical field $H_{\rm c2}$ and its anisotropy in overdoped superconducting Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_2$ ($x=0.6$-1) single crystals have been measured in steady magnetic fields up to 44 T and low temperatures down to 0.4 K. Analysis using both the quadratic term and power-law fitting demonstrates that the in-plane resistivity $\rho_{ab}(T)$ progressively approaches the Fermi-liquid $T^2$ behavior with increasing K doping and reaches a saturation plateau at $x \approx 0.8$. The temperature dependence of both $H^{ab}_{\rm{c2}}$ and $H^{c}_{\rm{c2}}$ follows the Werthamer-Helfand-Hohenberg model, incorporating orbital and spin paramagnetic effects. For $x \leq 0.8$, the orbital effect dominates for $H \parallel ab$, while the Pauli paramagnetic effect prevails for $H\parallel c$. For $x > 0.8$, the Pauli paramagnetic effect becomes dominant in both crystallographic directions. The anisotropy of $H_{\rm{c2}}(0)$ exhibits a discontinuity in its dependence on K doping concentration with a significant enhancement at $x=0.8$ and a maximum at $x=0.9$. These experimental results indicate that the electron correlation effect is enhanced in the heavily overdoped Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_2$ system where the underlying symmetries are broken due to the Fermi surface reconstruction before $x=0.9$.
|
Received: 11 October 2025
Revised: 07 November 2025
Accepted manuscript online: 11 November 2025
|
|
PACS:
|
74.25.Op
|
(Mixed states, critical fields, and surface sheaths)
|
| |
74.25.F-
|
(Transport properties)
|
| |
74.70.Xa
|
(Pnictides and chalcogenides)
|
| |
74.25.Dw
|
(Superconductivity phase diagrams)
|
|
| Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos. 2024YFA1611100, 2023YFA1406100, and 2018YFA0704201), the Systematic Fundamental Research Program Leveraging Major Scientific and Technological Infrastructure, Chinese Academy of Sciences (Grant No. JZHKYPT-2021–08), the National Natural Science Foundation of China (Grant Nos. 11704385, 11874359, and 12274444), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB25000000), and Steady High Magnetic Field Facility Instrument and Equipment Renovation. |
Corresponding Authors:
Huiqian Luo, Zhaosheng Wang
E-mail: hqluo@iphy.ac.cn;zswang@hmfl.ac.cn
|
Cite this article:
Ke Shi(史可), Wenshan Hong(洪文山), Yang Li(李阳), Minjie Zhang(张敏杰), Yongqi Han(韩永琦), Yu Zhao(赵宇), Jiating Wu(吴嘉挺), Ze Wang(王泽), Langsheng Ling(凌浪生), Chuanying Xi(郗传英), Li Pi(皮雳), Huiqian Luo(罗会仟), and Zhaosheng Wang(王钊胜) Doping dependence of resistivity, upper critical field and its anisotropy in overdoped Ba1-xKxFe2As2 (x = 0.6-1) single crystals 2026 Chin. Phys. B 35 017401
|
[1] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175 [2] Matsuda Y and Shimahara H 2007 J. Phys. Soc. Jap. 76 051005 [3] Hunte F, Jaroszynski J, Gurevich A, Larbalestier D C, Jin R, Sefat A S, McGuire M A, Sales B C, Christen D K and Mandrus D 2008 Nature 453 903 [4] Senatore C, Flukiger R, Cantoni M, Wu G, Liu R H and Chen X H 2008 Phys. Rev. B 78 054514 [5] Jia Y, Cheng P, Fang L, Luo H, Yang H, Ren C, Shan L, Gu C and Wen H H 2008 Appl. Phys. Lett. 93 032503 [6] Tarantini C, Gurevich A, Jaroszynski J, Balakirev F, Bellingeri E, Pallecchi I, Ferdeghini C, Shen B, Wen H H and Larbalestier D C 2011 Phys. Rev. B 84 184522 [7] Shi K, Zhang M J, Han Y Q, Zhao Y, Wang Z, Ling L S, Tong W, Xi C Y, Pi L, Ni S L, Zhou, M H and Wang Z S 2025 Supercond. Sci. Tech. 38 055023 [8] Khim S, Kim J W, Choi E S, Bang Y, Nohara M, Takagi H and Kim K H 2010 Phys. Rev. B 81 184511 [9] Zhang M, Wu J, Shi K, Ling L, Tong W, Xi C, Pi L, Wosnitza J and Luo H 2023 Appl. Phys. Lett. 123 072602 [10] Chen Z W, Zhang Y, Ma P, Xu Z T, Li Y L, Wang Y, Lu J M, Ma Y W and Gan Z Z 2024 Chin. Phys. B 33 047405 [11] Huang Y N, Ye Z F, Liu D Y and Qiu H Q 2024 Chin. Phys. Lett. 40 097405 [12] Zeng W J, Zhang Z Y, Dong X Y, Tu Y B, Wu Y W, Wang T, Zhang F, Shao S, Hou J, Hou X Y, Hao N, Mu G and Shan L 2025 Chin. Phys. B 34 087402 [13] Lee S, Jiang J, Zhang Y, Bark C W, Weiss J D, Tarantini C, Nelson C T, Jang H W, Folkman C M, Baek S H, Polyanskii A, Abraimov D, Yamamoto A, Park J W, Pan X Q, Hellstrom E E, Larbalestier D C and Eom C B 2010 Nat. Mater. 9 397 [14] Choi E M, Jung S G, Lee N H, Kwon Y S, Kang W N, Kim D H, Jung M H, Lee S I and Sun L 2009 Appl. Phys. Lett. 95 062507 [15] Sasmal K, Lv B, Lorenz B, Guloy A M, Chen F, Xue Y Y and Chu C W 2008 Phys. Rev. Lett. 101 107007 [16] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006 [17] Wu G, Chen H, Wu T, Xie Y L, Yan Y J, Liu R H, Wang X F, Ying J J and Chen X H 2008 J. Phys.: Condens. Matter 20 422201 [18] Ronning F, Klimczuk T, Bauer E D, Volz H and Thompson J D 2008 J. Phys.: Condens. Matter 20 322201 [19] Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M and Chen X 2010 Phys. Rev. B 82 180520 [20] Krzton-Maziopa A, Shermadini Z, Pomjakushina E, Pomjakushin V, Bendele M, Amato A, Khasanov R, Luetkens H and Conder K 2011 J. Phys.: Condens. Matter 23 052203 [21] Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J and Chen X H 2011 Phys. Rev. B 83 060512 [22] Fang M H, Wang H-D, Dong C H, Li Z J, Feng C M, Chen J and Yuan H Q 2011 Europhys. Lett. 94 27009 [23] Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W and Poettgen R 2008 Phys. Rev. B 78 020503 [24] Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004 [25] Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W, Cao G H and Xu Z A 2009 New J. Phys. 11 025008 [26] Aswartham S, Abdel-Hafiez M, Bombor D, Kumar M, Wolter A U B, Hess C, Evtushinsky D V, Zabolotnyy V B, Kordyuk A A, Kim T K, Borisenko S V, Behr G, Buchner B and Wurmehl S 2012 Phys. Rev. B 85 224520 [27] Qiu X, Zhou S Y, Zhang H, Pan B Y, Hong X C, Dai Y F, Eom M J, Kim J S, Ye Z R, Zhang Y, Feng D L and Li S Y 2012 Phys. Rev. X 2 011010 [28] Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C and Wen H H 2011 Phys. Rev. B 84 184512 [29] Rotter M, Pangerl M, Tegel M and Johrendt D 2008 Angew. Chem. Int. Ed. 47 7949 [30] Li Z, Zhou R, Liu Y, Sun D L, Yang J, Lin C T and Zheng G Q 2012 Phys. Rev. B 86 180501 [31] Luo H, Wang Z, Yang H, Cheng P, Zhu X and Wen H H 2008 Supercond. Sci. Tech. 21 125014 [32] Wang Z S, Luo H Q, Ren C and Wen H H 2008 Phys. Rev. B 78 140501 [33] Tanatar M A, Liu Y, Jaroszynski J, Brooks J S, Lograsso T A and Prozorov R 2017 Phys. Rev. B 96 184511 [34] Zocco D A, Grube K, Eilers F, Wolf T and Lohneysen H V 2013 Phys. Rev. Lett. 111 057007 [35] Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L and Wang N L 2009 Nature 457 565 [36] Shipulin I, Stegani N, Maccari I, Kihou K, Lee C H, Hu Q X, Zheng Y, Yang F Z, Li Y W, Yim C M, Huhne R, Klauss H H, Putti M, Caglieris F, Babaev E and Grinenko V 2023 Nat. Commun. 14 6374 [37] Khan S N and Johnson D D 2014 Phys. Rev. Lett. 112 156401 [38] Hardy F, Bohmer A E, Aoki D, Burger P, Wolf T, Schweiss P, Heid R, Adelmann P, Yao Y X, Kotliar G, Schmalian J and Meingast C 2013 Phys. Rev. Lett. 111 027002 [39] Li Y, Wu D, Shu Y, Liu B, Stuhr U, Deng G, Stampfl A P J, Zhao L, Zhou X, Li S, Pokhriyal A, Ghosh H, Hong W and Luo H 2025 Chin. Phys. Lett. 42 067405 [40] Grinenko V, Sarkar R, Kihou K, Lee C H, Morozov I, Aswartham S, Buchner B, Chekhonin P, Skrotzki W, Nenkov K, H uhne R, Nielsch K, Drechsler S L, Vadimov V L, Silaev M A, Volkov P A, Eremin I, Luetkens H and Klauss H H 2020 Nat. Phys. 16 789 [41] Grinenko V, Weston D, Caglieris F, Wuttke C, Hess C, Gottschall T, Maccari I, Gorbunov D, Zherlitsyn S, Wosnitza J, Rydh A, Kihou K, Lee C H, Sarkar R, Dengre S, Garaud J, Charnukha A, Huhne R, Nielsch K, Buchner B, Klauss H H and Babaev E 2021 Nat. Phys. 17 1254 [42] Tafti F F, Juneau-Fecteau A, Delage M E, de Cotret S R, Reid J P, Wang A F, Luo X G, Chen X H, Doiron-Leyraud N and Taillefer L 2013 Nat. Phys. 9 349 [43] Bud’ko S L, Sturza M, Chung D Y, Kanatzidis M G and Canfield P C 2013 Phys. Rev. B 87 100509 [44] Zhang S, Singh Y P, Huang X Y, Chen X J, Dzero M and Almasan C C 2015 Phys. Rev. B 92 174524 [45] Wu D, Jia J, Yang J, Hong W, Shu Y, Miao T, Yan H, Rong H, Ai P, Zhang X, Yin C, Liu J, Chen H, Yang Y, Peng C, Li C, Zhang S, Zhang F, Yang F, Wang Z, Zong N, Liu L, Li R, Wang X, Peng Q, Mao H, Liu G, Li S, Chen Y, Luo H, Wu X, Xu Z, Zhao L and Zhou X J 2024 Nat. Phys. 20 571 [46] Avci S, Chmaissem O, Chung D Y, Rosenkranz S, Goremychkin E A, Castellan J P, Todorov I S, Schlueter J A, Claus H, Daoud-Aladine A, Khalyavin D D, Kanatzidis M G and Osborn R 2012 Phys. Rev. B 85 184507 [47] Fang Z, Chen W G, Huang P C, Chen Z Y, Ding H W, Zhao H, Qian X X, Jiang S L, Zhang Y and Kuang G L 2024 IEEE Trans. Appl. Supercond. 34 1 [48] Doiron-Leyraud N, Auban-Senzier P, de Cotret S R, Bourbonnais C, Jerome D, Bechgaard K and Taillefer L 2009 Phys. Rev. B 80 214531 [49] Liu Y, Tanatar M A, Straszheim W E, Jensen B, Dennis K W, McCallum R W, Kogan V G, Prozorov R and Lograsso T A 2014 Phys. Rev. B 89 134504 [50] Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C and Wen H H 2011 Phys. Rev. B 84 184512 [51] Yuan J, Chen Q, Jiang K, Feng Z, Lin Z, Yu H, He G, Zhang J, Jiang X, Zhang X, Shi Y, Zhang Y, Qin M, Cheng Z G, Tamura N, Yang Y, Xiang T, Hu J, Takeuchi I, Jin K and Zhao Z 2022 Nature 602 431 [52] Jiang X, Qin M, Wei X, Xu L, Ke J, Zhu H, Zhang R, Zhao Z, Liang Q, Wei Z, Lin Z, Feng Z, Chen F, Xiong P, Yuan J, Zhu B, Li Y, Xi C, Wang Z, Yang M, Wang J, Xiang T, Hu J, Jiang K, Chen Q, Jin K and Zhao Z 2023 Nat. Phys. 19 365 [53] Hodovanets H, Liu Y, Jesche A, Ran S, Mun E D, Lograsso T A, Bud’ko S L and Canfield P C 2014 Phys. Rev. B 89 224517 [54] Liu Y and Lograsso T A 2014 Phys. Rev. B 90 224508 [55] Jacko A C, Fjærestad J O and Powell B J 2009 Nat. Phys. 5 422 [56] Carrington A, Mackenzie A P, Sinclair D C and Cooper J R 1994 Phys. Rev. B 49 13243 [57] Fuchs D T, Zeldov E, Rappaport M, Tamegai T, Ooi S and Shtrikman H 1998 Nature 391 373 [58] Clogston A M 1962 Phys. Rev. Lett. 9 266 [59] Helfand E and Werthamer N R 1966 Phys. Rev. 147 288 [60] Wang Z, Xie T, Kampert E, Forster T, Lu X, Zhang R, Gong D, Li S, Herrmannsdorfer T, Wosnitza J and Luo H 2015 Phys. Rev. B 92 174509 [61] Bristow M, Gower A, Prentice J C A, Watson M D, Zajicek Z, Blundell S J, Haghighirad A A, McCollam A and Coldea A I 2023 Phys. Rev. B 108 184507 [62] Jaroszynski J, Hunte F, Balicas L, Jo Y, Raicevic I, Gurevich A, Lar- balestier D C, Balakirev F F, Fang L, Cheng P, Jia Y and Wen H H 2008 Phys. Rev. B 78 174523 [63] Vinod K, Satya A T, Sharma Shilpam, Sundar C S and Bharathi A 2011 Phys. Rev. B 84 012502 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|