Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067303    DOI: 10.1088/1674-1056/27/6/067303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improved performance of Au nanocrystal nonvolatile memory by N2-plasma treatment on HfO2 blocking layer

Chen Wang(王尘)1, Yi-Hong Xu(许怡红)2, Song-Yan Chen(陈松岩)3, Cheng Li(李成)3, Jian-Yuan Wang(汪建元)3, Wei Huang(黄巍)3, Hong-Kai Lai(赖虹凯)3, Rong-Rong Guo(郭榕榕)1
1 Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices, School of Opto-electronic and Communiction Engineering, Xiamen University of Technology, Xiamen 361024, China;
2 Xiamen Institute of Technology, Xiamen 361024, China;
3 Department of Physics, Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China
Abstract  The N2-plasma treatment on a HfO2 blocking layer of Au nanocrystal nonvolatile memory without any post annealing is investigated. The electrical characteristics of the MOS capacitor with structure of Al-TaN/HfO2/SiO2/p-Si are also characterized. After N2-plasma treatment, the nitrogen atoms are incorporated into HfO2 film and may passivate the oxygen vacancy states. The surface roughness of HfO2 film can also be reduced. Those improvements of HfO2 film lead to a smaller hysteresis and lower leakage current density of the MOS capacitor. The N2-plasma is introduced into Au nanocrystal (NC) nonvolatile memory to treat the HfO2 blocking layer. For the N2-plasma treated device, it shows a better retention characteristic and is twice as large in the memory window than that for the no N2-plasma treated device. It can be concluded that the N2-plasma treatment method can be applied to future nonvolatile memory applications.
Keywords:  Au nanocrystal nonvolatile memory      N2-plasma      HfO2 dielectric film.  
Received:  22 January 2018      Revised:  21 March 2018      Accepted manuscript online: 
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  61.46.Hk (Nanocrystals)  
  52.77.-j (Plasma applications)  
  77.55.-g (Dielectric thin films)  
Fund: Project supported by the High Level Talent Project of Xiamen University of Technology,China (Grant Nos.YKJ16012R and YKJ16016R) and the National Natural Science Foundation of China (Grant No.51702271).
Corresponding Authors:  Chen Wang     E-mail:  chenwang@xmut.edu.cn

Cite this article: 

Chen Wang(王尘), Yi-Hong Xu(许怡红), Song-Yan Chen(陈松岩), Cheng Li(李成), Jian-Yuan Wang(汪建元), Wei Huang(黄巍), Hong-Kai Lai(赖虹凯), Rong-Rong Guo(郭榕榕) Improved performance of Au nanocrystal nonvolatile memory by N2-plasma treatment on HfO2 blocking layer 2018 Chin. Phys. B 27 067303

[1] Liu Z, Lee C, Narayanan V and Pei G 2002 IEEE Trans. Electron Dev. 49 1606
[2] Chan K C, Lee P F and Dai J Y 2008 Appl. Phys. Lett. 92 223105
[3] Mikhelashvili V, Meyler B, Yoffis S, Salzman J, Garbrecht M, Cohen-Hyams T, Kaplan W D and Eisenstein G 2009 Appl. Phys. Lett. 95 023104
[4] Xiong Y, Tu H, Du J, Ji M G, Zhang X and Wang L 2010 Appl. Phys. Lett. 97 012901
[5] Zhu W J, Ma T P, Zafar S and Tamagawa T 2002 IEEE Electron Dev. Lett. 23 597
[6] Gavartin J L, Ramo D M, Shluger A L, Bersuker G and Lee B 2006 Appl. Phys. Lett. 89 082908
[7] Xiong K, Robertson J, Gibson M C and Clark S 2005 Appl. Phys. Lett. 87 183505
[8] Umezawa N, Shiraishi K, Ohno T, Watanabe H, Chikyow T, Torii K, Yamabe K, Yamada K, Kitajima H and Arikado T 2005 Appl. Phys. Lett. 86 143507
[9] Xiong K, Robertson J and Clark S J 2006 J. Appl. Phys. 99 044105
[10] Akbar M S, Gopalan S, Cho H J, Onishi K, Choi R, Nieh R, Kang C, Kim Y, Han J and Krishnan S 2003 Appl. Phys. Lett. 82 1757
[11] Maeng W J and Kim H 2007 Appl. Phys. Lett. 91 092901
[12] Kang C S, Cho H J, Onishi K, Nieh R, Choi R, Gopalan S, Krishnan S, Han J H and Lee J C 2002 Appl. Phys. Lett. 81 2593
[13] Renault O, Samour D, Damlencourt J F, Blin D, Martin F, Marthon S, Barrett N and and Besson P 2002 Appl. Phys. Lett. 81 3627.
[14] Wang L, Xue K, Xu J B, Huang A and Chu P K 2007 Appl. Phys. Lett. 90 122901
[15] Maeng W, Gu G H, Park C, Lee K, Lee T and Kim H 2009 J. Electrochem. Soc. 156 G109
[16] Zhao Y P, Wang G C, Lu T M, Palasantzas G and De Hosson J T M 1999 Phys. Rev. B 60 9157
[17] Lee P F and Dai J Y 2010 Nanotechnology 21 295706
[18] Xu Z, Zhu C, Huo Z, Cui Y, Wang Y, Li F and Liu M 2012 Appl. Phys. Lett. 100 203509
[19] Dufourcq J and Bodnar S 2008 Appl. Phys. Lett. 92 073102
[20] Mikhelashvili V, Meyler B, Yofis S, Shneider Y, Zeidler A, Garbrecht M, Cohen-Hyams T, Kaplan W, Lisiansky M and Roizin Y 2011 Appl. Phys. Lett. 98 212902
[21] Chang T C, Jian F Y, Chen S C and Tsai Y T 2011 Mater. Today 14 608
[22] She M and King T J 2003 IEEE Trans. Electron Dev. 50 1934
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[4] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[5] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[6] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[7] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[8] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[9] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[10] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[11] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[12] Dependence of short channel length on negative/positive bias temperature instability (NBTI/PBTI) for 3D FinFET devices
Ren-Ren Xu(徐忍忍), Qing-Zhu Zhang(张青竹), Long-Da Zhou(周龙达), Hong Yang(杨红), Tian-Yang Gai(盖天洋), Hua-Xiang Yin(殷华湘), and Wen-Wu Wang(王文武). Chin. Phys. B, 2022, 31(1): 017301.
[13] Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure
Liangliang Guo(郭亮良), Yuming Zhang(张玉明), Suzhen Luan(栾苏珍), Rundi Qiao(乔润迪), and Renxu Jia(贾仁需). Chin. Phys. B, 2022, 31(1): 017304.
[14] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[15] A 3D SiC MOSFET with poly-silicon/SiC heterojunction diode
Sheng-Long Ran(冉胜龙), Zhi-Yong Huang(黄智勇), Sheng-Dong Hu(胡盛东), Han Yang(杨晗), Jie Jiang(江洁), and Du Zhou(周读). Chin. Phys. B, 2022, 31(1): 018504.
No Suggested Reading articles found!