|
|
LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets |
Ying Fu(付盈)1,2, Lianglong Huang(黄良龙)3, Xuefeng Zhou(周雪峰)3, Jian Chen(陈见)3, Xinyuan Zhang(张馨元)4, Pengyun Chen(陈鹏允)5, Shanmin Wang(王善民)3, Cai Liu(刘才)2, Dapeng Yu(俞大鹏)2, Hai-Feng Li(李海峰)1,†, Le Wang(王乐)2,‡, and Jia-Wei Mei(梅佳伟)2,6,§ |
1 Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China; 2 Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; 3 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; 4 Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China; 5 Institute of Resources Utilization and Rare-earth Development, Guangdong Academy of Sciences, Guangzhou 51065, China; 6 Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract The spin-1/2 kagome antiferromagnets are key prototype materials for studying frustrated magnetism. Three isostructural kagome antiferromagnets LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy) have been successfully synthesized by the hydrothermal method. LnCu3(OH)6Cl3 adopts space group P3m1 and features the layered Cu-kagome lattice with lanthanide Ln3+ cations sitting at the center of the hexagons. Although heavy lanthanides (Ln = Gd, Tb, Dy) in LnCu3(OH)6Cl3 provide a large effective magnetic moment and ferromagnetic-like spin correlations compared to light-lanthanides (Nd, Sm, Eu) analogues, Cu-kagome holds an antiferromagnetically ordered state at around 17 K like YCu3(OH)6Cl3.
|
Received: 19 July 2021
Revised: 09 August 2021
Accepted manuscript online: 17 August 2021
|
PACS:
|
06.60.Ei
|
(Sample preparation)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
75.40.Cx
|
(Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))
|
|
Fund: Project supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07C062), Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices (Grant No. ZDSYS20190902092905285), and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020B1515120100). L. Wang acknowledges the support of China Postdoctoral Science Foundation (Grant No. 2020M682780). H. F. Li acknowledges the financial supports from Science and Technology Development Fund, Macao SAR, China (File No. 0051/2019/AFJ), Guangdong Basic and Applied Basic Research Foundation (Guangdong-Dongguan Joint Fund No. 2020B1515120025), and Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, China (Grant No. 2019B121205003). |
Corresponding Authors:
Hai-Feng Li, Le Wang, Jia-Wei Mei
E-mail: haifengli@um.edu.mo;wangl36@sustech.edu.cn;meijw@sustech.edu.cn
|
Cite this article:
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟) LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets 2021 Chin. Phys. B 30 100601
|
[1] Savary L and Balents L 2016 Rep. Prog. Phys. 80 016502 [2] Broholm C, Cava R, Kivelson S, Nocera D, Norman M and Senthil T 2020 Science 367 6475 [3] Feng Z, Yi W, Zhu K, Wei Y, Miao S, Ma J, Luo J, Li S, Meng Z Y and Shi Y 2018 Chin. Phys. Lett. 36 017502 [4] Wen J J and Lee Y S 2019 Chin. Phys. Lett. 36 50101 [5] Wei Y, Ma X, Feng Z, Adroja D, Hillier A, Biswas P, Senyshyn A, Hoser A, Mei J W, Meng Z Y, Luo H Q, Shi Y G and Li S L 2020 Chin. Phys. Lett. 37 107503 [6] Helton J, Matan K, Shores M, Nytko E, Bartlett B, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204 [7] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406 [8] Feng Z, Li Z, Meng X, Yi W, Wei Y, Zhang J, Wang Y C, Jiang W, Liu Z, Li S, Liu F, Luo J, Li S, Zheng G, Meng Z Y, Mei J W and Shi Y 2017 Chin. Phys. Lett. 34 077502 [9] Feng Z, Wei Y, Liu R, Yan D, Wang Y C, Luo J, Senyshyn A, dela Cruz C, Yi W, Mei J W, Meng Z Y, Shi Y G and Li S 2018 Phys. Rev. B 98 155127 [10] Seo D K and Whangbo M H 1996 J. Am. Chem. Soc. 118 3951 [11] Kato H, Kato M, Yoshimura K and Kosuge K 2001 J. Phys.: Condens. Matter 13 9311 [12] Inami T, Nishiyama M, Maegawa S and Oka Y 2000 Phys. Rev. B 61 12181 [13] Nytko E A, Shores M P, Helton J S and Nocera D G 2009 Inorg. Chem. 48 7782 [14] Okuma R, Yajima T, Nishio-Hamane D, Okubo T and Hiroi Z 2017 Phys. Rev. B 95 094427 [15] Ribeiro P and Lee P A 2011 Phys. Rev. B 83 235119 [16] Guterding D, Jeschke H O and Valentí R 2016 Sci. Rep. 6 1 [17] Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802 [18] Guo H M and Franz M 2009 Phys. Rev. B 80 113102 [19] Gomilšek M, Žitko R, Klanjšek M, Pregelj M, Baines C, Li Y, Zhang Q and Zorko A 2019 Nat. Phys. 15 754 [20] Sun W, Huang Y X, Nokhrin S, Pan Y and Mi J X 2016 J. Mater. Chem. C 4 8772 [21] Zorko A, Pregelj M, Klanjšek M, Gomilšek M, Jaglišić Z, Lord J, Verezhak J, Shang T, Sun W and Mi J X 2019 Phys. Rev. B 99 214441 [22] Zorko A, Pregelj M, Gomilšek M, Klanjšek M, Zaharko O, Sun W and Mi J X 2019 Phys. Rev. B 100 144420 [23] Sun W, Huang Y X, Pan Y and Mi J X 2017 Dalton Trans. 46 9535 [24] Puphal P, Zoch K M, Dśor J, Bolte M and Krellner C 2018 Phys. Rev. Mater. 2 063402 [25] Rodríguez-Carvajal J 1993 Physica B 192 55 [26] Barthélemy Q, Puphal P, Zoch K M, Krellner C, Luetkens H, Baines C, Sheptyakov D, Kermarrec E, Mendels P and Bert F 2019 Phys. Rev. Mater. 3 074401 [27] Pustogow A, Li Y, Voloshenko I, Puphal P, Krellner C, Mazin I I, Dressel M and Valentí R 2017 Phys. Rev. B 96 241114 [28] Han T H, Singleton J and Schlueter J A 2014 Phys. Rev. Lett. 113 227203 [29] Freedman D E, Han T H, Prodi A, Müller P, Huang Q Z, Chen Y S, Webb S M, Lee Y S, McQueen T M and Nocera D G 2010 J. Am. Chem. Soc. 132 16185 [30] Arh T, Gomilšek M, Prelovšek P, Pregelj M, Klanjšek M, Ozarowski A, Clark S, Lancaster T, Sun W, Mi J X and Zorko A 2020 Phys. Rev. Lett. 125 027203 [31] Yoshida H, Noguchi N, Matsushita Y, Ishii Y, Ihara Y, Oda M, Okabe H, Yamashita S, Nakazawa Y, Takata A, Kida T, Narumi Y and Hagiwara M 2017 J. Phys. Soc. Jpn. 86 033704 [32] Iida K, Yoshida H K, Nakao A, Jeschke H O, Iqbal Y, Nakajima K, Ohira-Kawamura S, Munakata K, Inamura Y, Murai N, Ishikado M, Kumai R, Okada T, Oda M, Kakurai K and Matsuda M 2020 Phys. Rev. B 101 220408 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|