Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097502    DOI: 10.1088/1674-1056/aba09a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip

Xiao-Ping Ma(马晓萍)1, Hong-Guang Piao(朴红光)1, Lei Yang(杨磊)1, Dong-Hyun Kim2, Chun-Yeol You3, Liqing Pan(潘礼庆)1
1 Research Institute for Magnetoelectric & Weak Magnetic-field Detection, College of Science, China Three Gorges University, Yichang 443002, China;
2 Department of Physics, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea;
3 Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology(DGIST), Daegu 42988, Republic of Korea
Abstract  Field-driven magnetic domain wall propagation in ferromagnetic nanostrips with trapezoidal cross section has been systematically investigated by means of micromagnetic simulation. Asymmetric dynamic behaviors of domain wall, depending on the propagation direction, were observed under an external magnetic field. When the domain walls propagate in the opposite direction along the long axis of the nanostrip, the Walker breakdown fields as well as the average velocities are different. The asymmetric landscape of demagnetization energies, which arises from the trapezoidal geometry, is the main origin of the asymmetric propagation behavior. Furthermore, a trapezoid-cross-section nanostrip will become a nanotube if it is rolled artificially along its long axis, and thus a two-dimensional transverse domain wall will become a three-dimensional one. Interestingly, it is found that the asymmetric behaviors observed in two-dimensional nanostrips with trapezoidal cross section are similar with some dynamic properties occurring in three-dimensional nanotubes.
Keywords:  ferromagnetic nanowire      magnetic domain wall      geometric effect      asymmetric Walker breakdown  
Received:  27 March 2020      Revised:  01 June 2020      Accepted manuscript online:  29 June 2020
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  75.78.-n (Magnetization dynamics)  
  75.78.Cd (Micromagnetic simulations ?)  
  75.78.Fg (Dynamics of domain structures)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFB0903700 and 2017YFB0903702), Yichang Government Fund (Grant No. A19-402-a05), the Korea Research Foundation (NRF) (Grant No. 2018R1A2B3009569), and Korea Basic Science Institute (KBSI) (Grant No. D39614).
Corresponding Authors:  Hong-Guang Piao     E-mail:  hgpiao@ctgu.edu.cn

Cite this article: 

Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆) Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip 2020 Chin. Phys. B 29 097502

[1] Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D and Cowburn R P 2005 Science 309 1688
[2] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
[3] Allwood D A, Xiong G, Cooke M D, Faulkner C C, Atkinson D, Vernier N and Cowburn R P 2002 Science 296 2003
[4] Hayashi M, Thomas L, Moriya R, Rettner C and Parkin S S P 2008 Science 320 209
[5] Himeno A, Kasai S and Ono T 2005 Appl. Phys. Lett. 87 243108
[6] Im M Y, Bocklage L, Fischer P and Meier G 2009 Phys. Rev. Lett. 102 147204
[7] Pushp A, Phung T, Rettner C, Hughes B P, Yang S H, Thomas L and Parkin S S P 2013 Nat. Phys. 9 505
[8] Nakatani Y, Thiaville A and Miltat J 2005 J. Magn. Magn. Mater. 290-291 750
[9] Li Z D, Hu Y C, He P B and Sun L L 2018 Chin. Phys. B 27 077505
[10] Schryer N L and Walker L R 1974 J. Appl. Phys. 45 5406
[11] Burn D M and Atkinson D 2013 Appl. Phys. Lett. 102 242414
[12] Krishnia S, Purnama I and Lew W S 2014 Appl. Phys. Lett. 105 042404
[13] Piao H G, Shim J H, Lee S H, Djuhana D, Oh S K, Yu S C and Kim D H 2009 IEEE Trans. Magn. 45 3926
[14] Yan M, Andreas C, Kákay A, GarcíaS ánchez F and Hertel R 2012 Appl. Phys. Lett. 100 252401
[15] Han X F, Ali S S and Liang S H 2013 Sci. Chin.-Phys. Mech. Astron. 56 29
[16] Kim W, Jeong J H, Kim Y, Lim W C, Kim J H, Park J H, Shin H J, Park Y S, Kim K S, Park S H, Lee Y J, Kim K W, Kwon H J, Park H L, Ahn H S, Oh S C, Lee J E, Park S O, Choi S, Kang H K and Chung C 2011 International Electron Devices Meeting (Washington DC, USA 5-7 December 2011) p. 24.1.1
[17] Landeros P and Núñez Á S 2010 J. Appl. Phys. 108 033917
[18] Otálora J A, LópezL ópez J A, Vargas P and Landeros P 2012 Appl. Phys. Lett. 100 072407
[19] Hertel R 2016 J. Phys.: Condens. Matter 28 483002
[20] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Waeyenberge B V 2014 AIP Adv. 4 107133
[21] Gilbert T L 2004 IEEE Tran. Magn. 40 3443
[22] Piao H G, Djuhana D, Lee S H, Shim J H, Jun S H and Kim D H 2009 New Physics: Sae Mulli 58 715 (in Korean)
[23] Hubert A and Schäfer R 1998 Magnetic Domains: the Analysis of Magnetic Microstructures (Heidelberg: Springer-Verlag) chap. 3 p. 223
[24] Chen C, Piao H G, Shim J H, Pan L Q, Kim D H 2015 Chin. Phys. Lett. 32 087502
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[5] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[6] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[7] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Observation of magnetoresistance in CrI3/graphene van der Waals heterostructures
Yu-Ting Niu(牛宇婷), Xiao Lu(鲁晓), Zhong-Tai Shi(石钟太), and Bo Peng(彭波). Chin. Phys. B, 2021, 30(11): 117506.
[10] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[11] Magnon bands in twisted bilayer honeycomb quantum magnets
Xingchuan Zhu(朱兴川), Huaiming Guo(郭怀明), and Shiping Feng(冯世平). Chin. Phys. B, 2021, 30(7): 077505.
[12] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[13] Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction
Qiuyang Li(李求洋), Penghe Zhang(张蓬鹤), Haotian Li(李浩天), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Chunjie Yan(晏春杰), Liyuan Li(李丽媛), Yongbing Xu(徐永兵), Weixin Zhang(张卫欣), Bo Liu(刘波), Hao Meng(孟浩), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2021, 30(4): 047504.
[14] Effects of Nb and Mo additions on thermal behavior, microstructure and magnetic property of FeCoZrBGe alloy
Yaming Sun(孙亚明), Zhiqun Wang(王志群), Shi-Chong Xu(徐仕翀), and Zhong Hua(华中). Chin. Phys. B, 2021, 30(3): 038103.
[15] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
No Suggested Reading articles found!