Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127508    DOI: 10.1088/1674-1056/acca0a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multi-segmented nanowires for vortex magnetic domain wall racetrack memory

M Al Bahri, M Al Hinaai, and T Al Harthy
Department of Basic Sciences, A'Sharqiyah University, Post Box 42, PC 400, Ibra, Oman
Abstract  A vortex domain wall's (VW) magnetic racetrack memory's high performance depends on VW structural stability, high speed, low power consumption and high storage density. In this study, these critical parameters were investigated in magnetic multi-segmented nanowires using micromagnetic simulation. Thus, an offset magnetic nanowire with a junction at the center was proposed for this purpose. This junction was implemented by shifting one portion of the magnetic nanowire horizontally in the x-direction (l) and vertically (d) in the y-direction. The VW structure became stable by manipulating magnetic properties, such as magnetic saturation (Ms) and magnetic anisotropy energy (Ku). In this case, increasing the values of Ms≥ 800 kA/m keeps the VW structure stable during its dynamics and pinning and depinning in offset nanowires, which contributes to maintenance of the storage memory's lifetime for a longer period. It was also found that the VW moved with a speed of 500 m/s, which is desirable for VW racetrack memory devices. Moreover, it was revealed that the VW velocity could be controlled by adjusting the offset area dimensions (l and d), which helps to drive the VW by using low current densities and reducing the thermal-magnetic spin fluctuations. Further, the depinning current density of the VW (Jd) over the offset area increases as d increases and l decreases. In addition, magnetic properties, such as the Ms and Ku, can affect the depinning process of the VW through the offset area. For high storage density, magnetic nanowires (multi-segmented) with four junctions were designed. In total, six states were found with high VW stability, which means three bits per cell. Herein, we observed that the depinning current density (Jd) for moving the VW from one state to another was highly influenced by the offset area geometry (l and d) and the material's magnetic properties, such as the Ms and Ku.
Keywords:  micromagnetic simulation      vortex domain wall racetrack memory      multi-segmented magnetic nanowire      spin transfer torque  
Received:  10 January 2023      Revised:  01 March 2023      Accepted manuscript online:  04 April 2023
PACS:  75.75.Fk (Domain structures in nanoparticles)  
Corresponding Authors:  M Al Bahri     E-mail:  mohammed.albahri@asu.edu.om

Cite this article: 

M Al Bahri, M Al Hinaai, and T Al Harthy Multi-segmented nanowires for vortex magnetic domain wall racetrack memory 2023 Chin. Phys. B 32 127508

[1] Berger L 1996 Phys. Rev. B 54 9353
[2] Shinjo T, Okuno T, Hassdorf R, Shigeto K and Ono T 2000 Science 289 930
[3] Beach G, Knutson C, Nistor C, Tsoi M and Erskine L 2006 Phys. Rev. Lett. 97 057203
[4] Kent A D and Worledge D C 2015 Nat. Nanotech. 10 187
[5] Grollier J, Boulenc P, Cros V, Hamzić A, Vaurés A, Fert A and Faini G 2003 Appl. Phys. Lett. 83 509
[6] Gupta S, Sbiaa R, Al Bahri M, Ghosh A, Piramanayagam S N, Ranjbar M and Akerman J 2018 J. Phys. D: Appl. Phys. 51 465002
[7] Hayashi M, Thomas L, Moriya R, Rettner C and Parkin S S P 2008 Science 320 209
[8] Allwood D A, Xiong G, Faulkner C, Atkinson D, Petit D, Cowburn R P 2005 Science 309 1688
[9] Gaidis M C and Thomas L 2013 Nanoscale Semiconductor Memories: Technology and Applications 190 229
[10] Yamanouchi M and Leda J 2008 Science 317 1726
[11] Al Bahri M 2022 J. Magn. Magnet. Mater. 543 168611
[12] Brandão J, Novak R L, Lozano H, Soledade P R, Mello A, Garcia F and Sampaio L C 2014 J. Appl. Phys. 116 193902
[13] Mohanan V P and Kumar P 2017 J. Magn. Magnet. Mater. 422 419
[14] Wilhelm E S, McGrouther D, Heyne L, Bisig A and Kläui 2009 Appl. Phys. Lett. 95 252501
[15] Wieser R, Vedmedenko E Y, Weinberger P and Wiesendanger R 2010 Phys. Rev. B 82 144430
[16] Jin T, Kumar D, Gan W, Ranjbar M, Luo F, Sbiaa R, Liu X, Lew W S and Piramanayagam S N 2018 Phys. Status Solidi - Rapid Research Letters 12 1800197
[17] Hayashi M, Thomas L, Rettner C, Moriya R, Jiang X and Parkin S S P 2006 Phys. Rev. Lett. 97 207205
[18] Komine T, Murakami H, Nagayama T and Sugita R 2008 IEEE Transactions on Magnetics 44 2516
[19] Kunz A and Priem J D 2010 IEEE Transactions on Magnetics 46 1559
[20] Rahm M, Biberger J, Umansky V and Weiss D 2003 J. Appl. Phys. 93 7429
[21] Al Bahri M and Sbiaa R 2016 Scientific Reports 6 28590
[22] Sbiaa R and Al Bahri M 2016 J. Magn. Magnet. Mater. 411 113
[23] Al Bahri M, Borie B, Jin T L, Sbiaa R, Kläui M and Piramanayagam S N 2019 Phys. Rev. Applied 10 024023
[24] Noh S J, Miyamoto Y, Okuda M, Hayashi N and Keun Y 2012 J. Appl. Phys. 111 07D123
[25] Ho L D A, Tran M T, Cao X H, Dao V A, Ngo D T and Hoang D Q 2018 RSC Advances 8 14539
[26] Paixão E L M, Toscano D, Gomes J C S, Monteiro M G, Sato F, Leonel S A and Coura P Z 2018 J. Magn. Magnet. Mater. 451 639
[27] Bogart L K, Atkinson D, O'Shea K, McGrouther D and McVitie S 2009 Phys. Rev. B 79 054414
[28] Eastwood D S, Bogart L K and Atkinson D 2010 Acta Physica Polonica A 118 719
[29] McMichael R D and Donahue M J 1997 IEEE Transactions on Magnetics 33 4167
[30] Yershov K V, Kravchuk V P, Sheka D D and Gaididei Y 2014 J. Appl. Phys. 117 083908
[31] Streubel R, Kronast F, Reiche C F, Mühl T, Wolter A, Schmidt O G and Makarov D 2016 Appl. Phys. Lett. 108 042407
[32] Geng L D and Jin Y M 2017 J. Magn. Magnet. Mater. 423 84
[33] Zhu W, Liao J, Zhang Z, Ma B, Jin Q, Liu, Huang Z, Hu X, Ding A, Wu J, and Xu Y 2012 Appl. Phys. Lett. 101 082402
[34] Li Z and Zhang S 2004 Phys. Rev. Lett. 92 089402
[35] Kunz A 2006 IEEE Transactions on Magnetics 42 3219
[36] Borie B, Kehlberger A, Wahrhusen J, Grimm H and Kläui 2017 Phys. Rev. Appl. 8 024017
[37] Thiaville A, Nakatani Y, Miltat J, Suzuki Y 2005 Europhys. Lett. 69 990
[38] He J, Li Z and Zhang S 2006 J. Appl. Phys. 99 08G509
[39] Beach G, Tsoi M and Erskine J 2008 J. Magn. Magnet. Mater. 320 1272
[40] Kläui M 2008 J. Phys.: Condens. Matter 20 313001
[41] Al Bahri M 2020 J. Magn. Magnet. Mater. 515 167293
[1] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] In-plane spin excitation of skyrmion bags
Shuang Li(李爽), Ke-Xin Li(李可欣), Zhao-Hua Liu(刘照华), Qi-Yuan Zhu(朱起源), Chen-Bo Zhao(赵晨博), Hu Zhang(张虎), Xing-Qiang Shi(石兴强), Jiang-Long Wang(王江龙), Rui-Ning Wang(王瑞宁), Ru-Qian Lian(连如乾), Peng-Lai Gong(巩朋来), and Chen-Dong Jin(金晨东). Chin. Phys. B, 2023, 32(11): 117503.
[4] Optimization of the grain boundary diffusion process by doping gallium and zirconium in Nd-Fe-B sintered magnets
Zhiteng Li(李之藤), Haibo Xu(徐海波), Feng Liu(刘峰), Rongshun Lai(赖荣舜), Renjie Wu(武仁杰), Zhibin Li(李志彬), Yangyang Zhang(张洋洋), and Qiang Ma(马强). Chin. Phys. B, 2023, 32(10): 107503.
[5] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[6] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[7] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[8] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[9] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[10] Voltage control of magnetization switching and dynamics
Hong-Yu Wen(文宏玉), Jian-Bai Xia(夏建白). Chin. Phys. B, 2018, 27(6): 067502.
[11] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[12] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[13] Dynamic nucleation of domain-chains in magnetic nanotracks
Xiangjun Jin(金香君), Yong Li(李勇), Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127504.
[14] Control of spins in a nano-sized magnet using electric-current
Hong-yu Wen(文宏玉), Jian-bai Xia(夏建白). Chin. Phys. B, 2017, 26(4): 047501.
[15] Spin transfer torque in the semiconductor/ferromagnetic structure in the presence of Rashba effect
Javad Vahedi, Sahar Ghasab Satoory. Chin. Phys. B, 2017, 26(2): 028503.
No Suggested Reading articles found!