|
Special Issue:
SPECIAL TOPIC — Advanced magnonics
|
| SPECIAL TOPIC — Advanced magnonics |
Prev
Next
|
|
|
Directly tunable magnon frequency comb effect based on domain wall |
| Xiaoxue Yang(杨霄雪)1,2, Huiting Li(李慧婷)1,2, Xue-Feng Zhang(张雪枫)1,2, Xiao-Ping Ma(马晓萍)1,2,†, Je-Ho Shim(沈帝虎)1,2, Yingjiu Jin(金迎九)1,2, and Hong-Guang Piao(朴红光)1,2,‡ |
1 Department of Physics, College of Science, Yanbian University, Yanji 133002, China; 2 Institute of Quantum Science and Technology, Yanbian University, Yanji 133002, China |
|
|
|
|
Abstract Magnon frequency combs have garnered significant attention due to their wide-ranging potential applications, primarily generated by the interplay between spin waves and oscillating magnetic textures. Developing an easily achievable magnon frequency comb with directly tunable comb spacing is pivotal for broadening its utility. In this study, we engineered a Bloch-type magnetic domain wall with a stable structure and fixed position by employing a dual-pinning approach utilizing artificial structural defects and stray fields. We established a magnetic domain wall oscillation mode based on resonant Larmor precession, serving as the foundation for a magnon frequency comb derived from magnetic domain walls. By leveraging the locally distributed Oersted field generated by an alternating current, we achieved precise control over the oscillation frequency of the domain wall, thereby realizing a magnon frequency comb with directly tunable comb spacing. The insights from this research offer a promising shortcut for exploring frequency combs based on the interaction between spin waves and magnetic domain walls.
|
Received: 08 April 2025
Revised: 14 June 2025
Accepted manuscript online: 26 June 2025
|
|
PACS:
|
75.40.Gb
|
(Dynamic properties?)
|
| |
75.60.Ch
|
(Domain walls and domain structure)
|
| |
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
| |
91.30.Bi
|
(Seismic sources (mechanisms, magnitude, moment frequency spectrum))
|
|
| Fund: This study was supported by the National Natural Science Foundation of China (Grant No. 12364020), the Scientific and Technological Development Plan of Jilin Province (Grant No. 20240101295JC), the Science and Technology Research and Planning Project of Jilin Provincial Department of Education (Grant No. JJKH20230611KJ), and the Applied Foundation Research Project (Talent Funding Project) of Yanbian University (Grant No. ydkj202241). |
Corresponding Authors:
Xiao-Ping Ma, Hong-Guang Piao
E-mail: xpma1222@ybu.edu.cn;hgpiao@ybu.edu.cn
|
Cite this article:
Xiaoxue Yang(杨霄雪), Huiting Li(李慧婷), Xue-Feng Zhang(张雪枫), Xiao-Ping Ma(马晓萍), Je-Ho Shim(沈帝虎), Yingjiu Jin(金迎九), and Hong-Guang Piao(朴红光) Directly tunable magnon frequency comb effect based on domain wall 2025 Chin. Phys. B 34 107507
|
[1] Wang Z, Cao Y, Yan P, Wang X R and Zhang B 2018 Phys. Rev. B 97 094421 [2] Xiong H 2023 Fundam. Res. 3 8 [3] Matveeva P G and Aristov D N 2016 Phys. Rev. B 94 214425 [4] Van de Wiele B, Hämäläinen S J, Baláž P, Montoncello F and van Dijken S 2016 Sci. Rep. 6 21330 [5] Fernández-García L, Ruiz-Gómez S, Guerrero R, Guedas R, Aroca C, Perez L, Prieto J L and Muñoz M 2024 APL Mater. 12 051116 [6] Zheng S, Wang Z, Wang Y, Sun F, He Q, Yan P and Yuan H Y 2023 J. Appl. Phys. 134 151101 [7] Schultheiss K, Hula T, Verba R, Fassbender J, Kákay A, Schultheiss H and Körber L 2020 Phys. Rev. Lett. 125 207203 [8] Yu H, Xiao J and Schultheiss H 2021 Phys. Rep. 905 1 [9] Liang X, Cao Y, Yan P and Zhou Y 2024 Nano Lett. 24 6730 [10] Sun J, Shi S and Wang J 2022 Adv. Eng. Mater. 24 2101245 [11] Wang Z, Yuan H Y, Cao Y, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202 [12] Wang Z, Yuan H Y, Cao Y and Yan P 2022 Phys. Rev. Lett. 129 107203 [13] Ge X, Chen Y, Cao Y, Li C, Li T, Li Z, You L, Liang S, Yang X and Zhang Y 2022 J Phys. D: Appl. Phys. 55 295302 [14] Zhou Z,Wang X, Nie Y, Xia Q and Guo G 2021 J. Magn. Magn. Mater. 534 168046 [15] Hertel R, Wulfhekel W and Kirschner J 2004 Phys. Rev. Lett. 93 257201 [16] Zhang S, Mu C, Zhu Q, Zheng Q, Liu X, Wang J and Liu Q 2014 J. Appl. Phys. 115 013908 [17] Chang L, Liu Y, Kao M, Tsai L, Liang J and Lee S 2018 Sci. Rep. 8 3910 [18] Gao Z, Su Y, Weng L, Hu J and Park C 2019 New J. Phys. 21 063014 [19] Djuhana D, Piao H, Lee S, Kim D, Ahn S and Choe S 2010 Appl. Phys. Lett. 97 022511 [20] Djuhana D, Soegijono B, Piao H, Oh S K, Yu S and Kim D 2013 J. Korean Phys. Soc. 63 654 [21] Dong X and Wu Z 2024 Chin. Phys. B 33 067502 [22] Cheng M, Yuan X, Li S, Chen C, Zhang Z, Yu Z, Liu Y, Lu Z and Xiong R 2020 Nanotechnology 31 235201 [23] Berger L 1986 Phys. Rev. B 33 1572 [24] Bisig A, Heyne L, Boulle O and Kläui M 2009 Appl. Phys. Lett. 95 162504 [25] Han D, Kim S, Lee J, Hermsdoerfer S J, Schultheiss H, Leven B and Hillebrands B 2009 Appl. Phys. Lett. 94 112502 [26] Metaxas P J, Albert M, Lequeux S, Cros V, Grollier J, Bortolotti P, Anane A and Fangohr H 2016 Phys. Rev. B 93 054414 [27] Martinez E, Torres L and Lopez-Diaz L 2011 Phys. Rev. B 83 174444 [28] Singh B, Ravishankar R, Otálora J A, Soldatov I, Schäfer R, Karnaushenko D, Neu V and Schmidt O G 2022 Nanoscale 14 13667 [29] Arai H, Tsukahara H and Imamura H 2012 Appl. Phys. Lett. 101 092405 [30] Franken J H, Lavrijsen R, Kohlhepp J T, Swagten H JMand Koopmans B 2011 Appl. Phys. Lett. 98 102512 [31] Hula T, Schultheiss K, Gonçalves F J T, Körber L, Bejarano M, Copus M, Flacke L, Liensberger L, Buzdakov A, Kákay A,Weiler M, Camley R, Fassbender J and Schultheiss H 2022 Appl. Phys. Lett. 121 112404 [32] Luo X, Lu Z, Yuan C, Guo F, Xiong R and Shi J 2016 J. Appl. Phys. 119 233901 [33] Rao J W, Yao B, Wang C Y, Zhang C, Yu T and Lu W 2023 Phys. Rev. Lett. 130 046705 [34] Verba R, Wehrmann F, Wagner K, Körber L, Hula T, Hache T, Kákay A, Awad A A, Tiberkevich V, Slavin A N, Fassbender J, Schultheiss H and Schultheiss K 2019 Phys. Rev. Lett. 122 097202 [35] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133 [36] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839 [37] Yang X, Ai X, Liu X, Li H, Ma X, Shim J and Piao H 2024 Appl. Phys. Lett. 125 172403 [38] Venkat G, Kumar D, Franchin M, Dmytriev O, Mruczkiewicz M, Fangoh H, Barman A, Krawczyk M and Prabhakar A 2013 IEEE Trans. Magn. 49 524 [39] Wang Q, Chumak A, Jin L, Zhang H, Hillebrands B and Zhong Z 2017 Phys. Rev. B 95 134433 [40] Holmqvist C, Belzig W and Fogelstrom M 2018 Philos. Trans. R. Soc. A 376 20150229 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|