Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107507    DOI: 10.1088/1674-1056/ade856
Special Issue: SPECIAL TOPIC — Advanced magnonics
SPECIAL TOPIC — Advanced magnonics Prev   Next  

Directly tunable magnon frequency comb effect based on domain wall

Xiaoxue Yang(杨霄雪)1,2, Huiting Li(李慧婷)1,2, Xue-Feng Zhang(张雪枫)1,2, Xiao-Ping Ma(马晓萍)1,2,†, Je-Ho Shim(沈帝虎)1,2, Yingjiu Jin(金迎九)1,2, and Hong-Guang Piao(朴红光)1,2,‡
1 Department of Physics, College of Science, Yanbian University, Yanji 133002, China;
2 Institute of Quantum Science and Technology, Yanbian University, Yanji 133002, China
Abstract  Magnon frequency combs have garnered significant attention due to their wide-ranging potential applications, primarily generated by the interplay between spin waves and oscillating magnetic textures. Developing an easily achievable magnon frequency comb with directly tunable comb spacing is pivotal for broadening its utility. In this study, we engineered a Bloch-type magnetic domain wall with a stable structure and fixed position by employing a dual-pinning approach utilizing artificial structural defects and stray fields. We established a magnetic domain wall oscillation mode based on resonant Larmor precession, serving as the foundation for a magnon frequency comb derived from magnetic domain walls. By leveraging the locally distributed Oersted field generated by an alternating current, we achieved precise control over the oscillation frequency of the domain wall, thereby realizing a magnon frequency comb with directly tunable comb spacing. The insights from this research offer a promising shortcut for exploring frequency combs based on the interaction between spin waves and magnetic domain walls.
Keywords:  spintronics      magnetic domain wall      spin waves      frequency  
Received:  08 April 2025      Revised:  14 June 2025      Accepted manuscript online:  26 June 2025
PACS:  75.40.Gb (Dynamic properties?)  
  75.60.Ch (Domain walls and domain structure)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  91.30.Bi (Seismic sources (mechanisms, magnitude, moment frequency spectrum))  
Fund: This study was supported by the National Natural Science Foundation of China (Grant No. 12364020), the Scientific and Technological Development Plan of Jilin Province (Grant No. 20240101295JC), the Science and Technology Research and Planning Project of Jilin Provincial Department of Education (Grant No. JJKH20230611KJ), and the Applied Foundation Research Project (Talent Funding Project) of Yanbian University (Grant No. ydkj202241).
Corresponding Authors:  Xiao-Ping Ma, Hong-Guang Piao     E-mail:  xpma1222@ybu.edu.cn;hgpiao@ybu.edu.cn

Cite this article: 

Xiaoxue Yang(杨霄雪), Huiting Li(李慧婷), Xue-Feng Zhang(张雪枫), Xiao-Ping Ma(马晓萍), Je-Ho Shim(沈帝虎), Yingjiu Jin(金迎九), and Hong-Guang Piao(朴红光) Directly tunable magnon frequency comb effect based on domain wall 2025 Chin. Phys. B 34 107507

[1] Wang Z, Cao Y, Yan P, Wang X R and Zhang B 2018 Phys. Rev. B 97 094421
[2] Xiong H 2023 Fundam. Res. 3 8
[3] Matveeva P G and Aristov D N 2016 Phys. Rev. B 94 214425
[4] Van de Wiele B, Hämäläinen S J, Baláž P, Montoncello F and van Dijken S 2016 Sci. Rep. 6 21330
[5] Fernández-García L, Ruiz-Gómez S, Guerrero R, Guedas R, Aroca C, Perez L, Prieto J L and Muñoz M 2024 APL Mater. 12 051116
[6] Zheng S, Wang Z, Wang Y, Sun F, He Q, Yan P and Yuan H Y 2023 J. Appl. Phys. 134 151101
[7] Schultheiss K, Hula T, Verba R, Fassbender J, Kákay A, Schultheiss H and Körber L 2020 Phys. Rev. Lett. 125 207203
[8] Yu H, Xiao J and Schultheiss H 2021 Phys. Rep. 905 1
[9] Liang X, Cao Y, Yan P and Zhou Y 2024 Nano Lett. 24 6730
[10] Sun J, Shi S and Wang J 2022 Adv. Eng. Mater. 24 2101245
[11] Wang Z, Yuan H Y, Cao Y, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202
[12] Wang Z, Yuan H Y, Cao Y and Yan P 2022 Phys. Rev. Lett. 129 107203
[13] Ge X, Chen Y, Cao Y, Li C, Li T, Li Z, You L, Liang S, Yang X and Zhang Y 2022 J Phys. D: Appl. Phys. 55 295302
[14] Zhou Z,Wang X, Nie Y, Xia Q and Guo G 2021 J. Magn. Magn. Mater. 534 168046
[15] Hertel R, Wulfhekel W and Kirschner J 2004 Phys. Rev. Lett. 93 257201
[16] Zhang S, Mu C, Zhu Q, Zheng Q, Liu X, Wang J and Liu Q 2014 J. Appl. Phys. 115 013908
[17] Chang L, Liu Y, Kao M, Tsai L, Liang J and Lee S 2018 Sci. Rep. 8 3910
[18] Gao Z, Su Y, Weng L, Hu J and Park C 2019 New J. Phys. 21 063014
[19] Djuhana D, Piao H, Lee S, Kim D, Ahn S and Choe S 2010 Appl. Phys. Lett. 97 022511
[20] Djuhana D, Soegijono B, Piao H, Oh S K, Yu S and Kim D 2013 J. Korean Phys. Soc. 63 654
[21] Dong X and Wu Z 2024 Chin. Phys. B 33 067502
[22] Cheng M, Yuan X, Li S, Chen C, Zhang Z, Yu Z, Liu Y, Lu Z and Xiong R 2020 Nanotechnology 31 235201
[23] Berger L 1986 Phys. Rev. B 33 1572
[24] Bisig A, Heyne L, Boulle O and Kläui M 2009 Appl. Phys. Lett. 95 162504
[25] Han D, Kim S, Lee J, Hermsdoerfer S J, Schultheiss H, Leven B and Hillebrands B 2009 Appl. Phys. Lett. 94 112502
[26] Metaxas P J, Albert M, Lequeux S, Cros V, Grollier J, Bortolotti P, Anane A and Fangohr H 2016 Phys. Rev. B 93 054414
[27] Martinez E, Torres L and Lopez-Diaz L 2011 Phys. Rev. B 83 174444
[28] Singh B, Ravishankar R, Otálora J A, Soldatov I, Schäfer R, Karnaushenko D, Neu V and Schmidt O G 2022 Nanoscale 14 13667
[29] Arai H, Tsukahara H and Imamura H 2012 Appl. Phys. Lett. 101 092405
[30] Franken J H, Lavrijsen R, Kohlhepp J T, Swagten H JMand Koopmans B 2011 Appl. Phys. Lett. 98 102512
[31] Hula T, Schultheiss K, Gonçalves F J T, Körber L, Bejarano M, Copus M, Flacke L, Liensberger L, Buzdakov A, Kákay A,Weiler M, Camley R, Fassbender J and Schultheiss H 2022 Appl. Phys. Lett. 121 112404
[32] Luo X, Lu Z, Yuan C, Guo F, Xiong R and Shi J 2016 J. Appl. Phys. 119 233901
[33] Rao J W, Yao B, Wang C Y, Zhang C, Yu T and Lu W 2023 Phys. Rev. Lett. 130 046705
[34] Verba R, Wehrmann F, Wagner K, Körber L, Hula T, Hache T, Kákay A, Awad A A, Tiberkevich V, Slavin A N, Fassbender J, Schultheiss H and Schultheiss K 2019 Phys. Rev. Lett. 122 097202
[35] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133
[36] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[37] Yang X, Ai X, Liu X, Li H, Ma X, Shim J and Piao H 2024 Appl. Phys. Lett. 125 172403
[38] Venkat G, Kumar D, Franchin M, Dmytriev O, Mruczkiewicz M, Fangoh H, Barman A, Krawczyk M and Prabhakar A 2013 IEEE Trans. Magn. 49 524
[39] Wang Q, Chumak A, Jin L, Zhang H, Hillebrands B and Zhong Z 2017 Phys. Rev. B 95 134433
[40] Holmqvist C, Belzig W and Fogelstrom M 2018 Philos. Trans. R. Soc. A 376 20150229
[1] Diamond NV center quantum magnetic sensor using a dual-frequency broadband antenna
Ke-Qi Shi(施柯琦), Heng Hang(杭衡), Wen-Tao Lu(卢文韬), Jing-Cheng Huang(黄竟成), Na Li(李娜), Jin-Xu Wang(王金旭), Zeng-Bo Xu(许增博), Lin-Yan Yu(虞林嫣), Sheng-Kai Xia(夏圣开), Yu-Chen Bian(卞雨辰), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2025, 34(9): 094205.
[2] Dual-species stimulated deceleration of MgF molecules with Rb atoms
Jin Wei(魏晋), Di Wu(吴迪), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2025, 34(7): 073701.
[3] Optimization of wide frequency range 6H-SiC MEMS chips for a fiber optic Fabry-Perot accelerometer
Mariano Mahissi(马依思·马里亚诺), Xinli Ma(马新莉), Weiming Cai(蔡卫明), Xianmin Zhang(章献民), and Michel Dossou(多苏·米歇尔). Chin. Phys. B, 2025, 34(7): 074203.
[4] Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator
Pi-Ye Zhou(周丕烨), Xiao-Hui Li(李晓慧), and Yuan Wan(万源). Chin. Phys. B, 2025, 34(6): 067501.
[5] RF detection of split-gate modes in Si-MOS quantum dots
Ning Chu(楚凝), Sheng-Kai Zhu(祝圣凯), Ao-Ran Li(李傲然), Chu Wang(王储), Wei-Zhu Liao(廖伟筑), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(4): 040303.
[6] A program for modeling the RF wave propagation of ICRF antennas utilizing the finite element method
Lei-Yu Zhang(张雷宇), Yi-Xuan Li(李屹轩), Ming-Yue Han(韩明月), and Quan-Zhi Zhang(张权治). Chin. Phys. B, 2025, 34(4): 045201.
[7] First principles prediction of the valley Hall effect in ScBrCl monolayer
Xiang Yu(于翔), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2025, 34(4): 047305.
[8] Impurity sputtering model for ICRF edge plasma-surface interactions
Quan-Zhi Zhang(张权治), Ze-Xuan Liu(刘泽璇), Fang-Fang Ma(马方方), Lei-Yu Zhang(张雷宇), and Nosir Matyakubov. Chin. Phys. B, 2025, 34(3): 035201.
[9] A WKB method based on parabolic cylinder function for very-low-frequency sound propagation in deep ocean
Jian-Kang Zhan(詹建康), Sheng-Chun Piao(朴胜春), Li-Jia Gong(龚李佳), Yang Dong(董阳), Yong-Chao Guo(郭永超), and Guang-Xue Zheng(郑广学). Chin. Phys. B, 2025, 34(3): 034301.
[10] Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate
Suixin Zhan(詹遂鑫), Shaokang Yuan(袁少康), Yuming Bai(白宇明), Fu Liu(刘福), Bohan Zhang(张博涵), Weijia Han(韩卫家), Tao Wang(王韬), Shengxiang Wang(汪胜祥), and Cai Zhou(周偲). Chin. Phys. B, 2025, 34(2): 027503.
[11] Stabilizing 459 nm passive optical clock for pumping 1470 nm active optical clock
Haoyang Wu(吴浩洋), Zhiqiang Wen(温智强), Chen Wang(王琛), Zhenfeng Liu(刘珍峰), Jingbiao Chen(陈景标), Shougang Zhang(张首刚), and Deshui Yu(于得水). Chin. Phys. B, 2025, 34(11): 114201.
[12] Multipartite entanglement and one-way steering in magnon frequency comb
Qianjun Zheng(郑芊君), Yunshan Cao(曹云姗), and Peng Yan(严鹏). Chin. Phys. B, 2025, 34(10): 107514.
[13] Review of magnons in van der Waals materials: From fundamental physics to frontiers
Zhen-Nan Wang(王震南), Yan-Pei Lv(吕延培), Hao-Nan Chang(常浩男), and Jun Zhang(张俊). Chin. Phys. B, 2025, 34(10): 107201.
[14] Micromagnetic study of the dipolar-exchange spin waves in antiferromagnetic thin films
Jiongjie Wang(王炯杰) and Jiang Xiao(肖江). Chin. Phys. B, 2025, 34(10): 107505.
[15] Controlling coupled magnons with pumps
Fan Yang(杨帆), Chenxiao Wang(王辰笑), Zhijian Chen(陈志坚), Kaixin Zhao(赵恺欣), Weihao Liu(刘炜豪), Shuhuan Ma(马舒寰), Chunke Wei(魏纯可), Jiantao Song(宋剑涛), Jinwei Rao(饶金威), and Bimu Yao(姚碧霂). Chin. Phys. B, 2025, 34(10): 107508.
No Suggested Reading articles found!