Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020312    DOI: 10.1088/1674-1056/ad09d0
GENERAL Prev   Next  

Simulation of optimal work extraction for quantum systems with work storage

Peng-Fei Song(宋鹏飞)1 and Dan-Bo Zhang(张旦波)1,2,†
1 Key Laboratory of Atomic and Subatomic Structure and Quantum Control(Ministry of Education), and School of Physics, South China Normal University, Guangzhou 510006, China;
2 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
Abstract  The capacity to extract work from a quantum heat machine is not only of practical value but also lies at the heart of understanding quantum thermodynamics. In this paper, we investigate optimal work extraction for quantum systems with work storage, where extracting work is completed by a unitary evolution on the composite system. We consider the physical requirement of energy conservation both strictly and on average. For both, we construct their corresponding unitaries and propose variational quantum algorithms for optimal work extraction. We show that maximal work extraction in general can be feasible when energy conservation is satisfied on average. We demonstrate with numeral simulations using a continuous-variable work storage. Our work show an implementation of a variational quantum computing approach for simulating work extraction in quantum systems.
Keywords:  quantum algorithm      quantum thermodyanmics  
Received:  05 September 2023      Revised:  24 October 2023      Accepted manuscript online:  06 November 2023
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  05.70.-a (Thermodynamics)  
Fund: Project supported by the Guangdong Basic and Applied Basic Research Fund (Grant No. 2023A1515011460) and the National Natural Science Foundation of China (Grant No. 12375013).
Corresponding Authors:  Dan-Bo Zhang     E-mail:  dbzhang@m.scnu.edu.cn

Cite this article: 

Peng-Fei Song(宋鹏飞) and Dan-Bo Zhang(张旦波) Simulation of optimal work extraction for quantum systems with work storage 2024 Chin. Phys. B 33 020312

[1] Skrzypczyk P, Short A J and Popescu S 2014 Nat. Commun. 5 4185
[2] Åberg J 2013 Nat. Commun. 4 1925
[3] Allahverdyan A E, Balian R and Nieuwenhuizen T M 2004 Europhys. Lett. 67 565
[4] Ribezzi-Crivellari M and Ritort F 2019 Nat. Phys. 15 660
[5] Bera M N, Riera A, Lewenstein M and Winter A 2017 Nat. Commun. 8 2180
[6] Korzekwa K, Lostaglio M, Oppenheim J and Jennings D 2016 New J. Phys. 18 023045
[7] Funo K, Watanabe Y and Ueda M 2013 Phys. Rev. A 88 052319
[8] Huang X L, Wang T and Yi X X 2012 Phys. Rev. E 86 051105
[9] Obejko M 2021 Nat. Commun. 12 918
[10] Narasimhachar V, Assad S, Binder F C, Thompson J, Yadin B and Gu M 2021 NPJ Quantum Inf. 7 9
[11] Uzdin R 2016 Phys. Rev. Appl. 6 024004
[12] Brandner K, Bauer M, Schmid M T and Seifert U 2015 New J. Phys. 17 065006
[13] Mitsuhashi Y, Kaneko K and Sagawa T 2022 Phys. Rev. X 12 021013
[14] Masuyama Y, Funo K, Murashita Y, Noguchi A, Kono S, Tabuchi Y, Yamazaki R, Ueda M and Nakamura Y 2018 Nat. Commun. 9 1291
[15] Hu C K, Santos A C, Cui J M, Huang Y F, Soares-Pinto D O, Sarandy M S, Li C F and Guo G C 2020 NPJ Quantum Inf. 6 73
[16] Maslennikov G, Ding S, Hablützel R, Gan J, Roulet A, Nimmrichter S, Dai J, Scarani V and Matsukevich D 2019 Nat. Commun. 10 202
[17] Zhang J W, Zhang J Q, Ding G Y, Li J C, Bu J T, Wang B, Yan L L, Su S L, Chen L, Nori F, Özdemir K, Zhou F, Jing H and Feng M 2022 Nat. Commun. 13 6225
[18] Andolina G M, Keck M, Mari A, Campisi M, Giovannetti V and Polini M 2019 Phys. Rev. Lett. 122 047702
[19] Alicki R and Fannes M 2013 Phys. Rev. E 87 042123
[20] Perarnau-Llobet M, Hovhannisyan K V, Huber M, Skrzypczyk P, Brunner N and Acín A 2015 Phys. Rev. X 5 041011
[21] Skrzypczyk P, Short A J and Popescu S 2013 arXiv preprint arXiv: 1302.2811
[22] Binder F, Correa L A, Gogolin C, Anders J and Adesso G 2018 Fundam. Theor. Phys. 195 1
[23] Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
[24] Dong H, Xu D, Cai C, Sun C, et al. 2011 Phys. Rev. E 83 061108
[25] Quan H T, Liu Y x, Sun C P and Nori F 2007 Phys. Rev. E 76 031105
[26] Quan H T 2009 Phys. Rev. E 79 041129
[27] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[28] Kammerlander P and Anders J 2016 Sci. Rep. 6 22174
[29] Roßnagel J, Dawkins S T, Tolazzi K N, Abah O, Lutz E, Schmidt-Kaler F and Singer K 2016 Science 352 325
[30] Scovil H E and Schulz-DuBois E O 1959 Phys. Rev. Lett. 2 262
[31] Parrondo J M, Horowitz J M and Sagawa T 2015 Nat. Phys. 11 131
[32] Cerezo M, Arrasmith A, Babbush R, Benjamin S C, Endo S, Fujii K, McClean J R, Mitarai K, Yuan X, Cincio L, et al. 2021 Nat. Rev. Phys. 3 625
[33] Wecker D, Hastings M B and Troyer M 2015 Phys. Rev. A 92 042303
[34] Farhi E, Goldstone J and Gutmann S 2014 arXiv preprint arXiv: 1411.4028
[35] McClean J R, Romero J, Babbush R and Aspuru-Guzik A 2016 New J. Phys. 18 023023
[36] Elouard C, Herrera-Martí D A, Clusel M and Aufféves A 2017 NPJ Quantum Inf. 3 9
[37] Scully M O 2001 Phys. Rev. Lett. 87 220601
[38] Scully M O, Zubairy M S, Agarwal G S and Walther H 2003 Science 299 862
[39] Quan H, Zhang P and Sun C 2005 Phys. Rev. E 72 056110
[40] Vedral V 2002 Rev. Mod. Phys. 74 197
[41] Anders J and Giovannetti V 2013 New J. Phys. 15 033022
[42] Higgott O, Wang D and Brierley S 2019 Quantum 3 156
[43] Nakanishi K M, Mitarai K and Fujii K 2019 Phys. Rev. Res. 1 033062
[44] Malabarba A S, Short A J and Kammerlander P 2015 New J. Phys. 17 045027
[45] berg J 2014 Phys. Rev. Lett. 113 150402
[46] Lieb E H and Yngvason J 1999 Phys. Rep. 310 1
[47] He M Q, Zhang D B and Wang Z 2022 Quantum Sci. Technol. 7 025026
[48] Zhang D B, Zhang G Q, Xue Z Y, Zhu S L and Wang Z 2021 Phys. Rev. Lett. 127 020502
[49] Ladyman J, Presnell S and Short A J 2008 Stud. Hist. Philos. M P 39 315
[50] Kitaev A, Mayers D and Preskill J 2004 Phys. Rev. A 69 052326
[51] Lloyd S 2003 Hybrid Quantum Computing Quantum Information with Continuous Variables (Springer) pp. 37-45
[52] Brunner N, Linden N, Popescu S and Skrzypczyk P 2012 Phys. Rev. E 85 051117
[53] Linden N, Popescu S, Short A J and Winter A 2009 Phys. Rev. E 79 061103
[54] Short A J 2011 New J. Phys. 13 053009
[55] Wiersema R, Zhou C, de Sereville Y, Carrasquilla J F, Kim Y B and Yuen H 2020 PRX Quantum 1 020319
[56] Zhang J, Hess P W, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I D, Potter A C, Vishwanath A, et al. 2017 Nature 543 217
[57] Ho W W and Hsieh T H 2019 Scipost Phys. 6 029
[58] Manzano G, Galve F, Zambrini R and Parrondo J M 2016 Phys. Rev. E 93 052120
[59] Klaers J, Faelt S, Imamoglu A and Togan E 2017 Phys. Rev. X 7 031044
[60] Liu Y x, Wei L F, Johansson J R, Tsai J S and Nori F 2007 Phys. Rev. B 76 144518
[61] Valenzuela S O, Oliver W D, Berns D M, Berggren K K, Levitov L S and Orlando T P 2006 Science 314 1589
[62] De Motte D, Grounds A, Rehák M, Rodriguez Blanco A, Lekitsch B, Giri G, Neilinger P, Oelsner G, Il'ichev E, Grajcar M, et al. 2016 Quantum Inf. Process. 15 5385
[63] Pusz W and Woronowicz S L 1978 Commun. Math. Phys. 58 273
[64] Lenard A 1978 J. Stat. Phys. 19 575
[65] Manzano G, Plastina F and Zambrini R 2018 Phys. Rev. Lett. 121 120602
[66] Li J, Yang X, Peng X and Sun C P 2017 Phys. Rev. Lett. 118 150503
[67] Bittel L and Kliesch M 2021 Phys. Rev. Lett. 127 120502
[68] Riera A, Gogolin C and Eisert J 2012 Phys. Rev. Lett. 108 080402
[1] Quantum algorithm for minimum dominating set problem with circuit design
Haoying Zhang(张皓颖), Shaoxuan Wang(王绍轩), Xinjian Liu(刘新建), Yingtong Shen(沈颖童), and Yukun Wang(王玉坤). Chin. Phys. B, 2024, 33(2): 020310.
[2] Variational quantum simulation of the quantum critical regime
Zhi-Quan Shi(石志全), Xu-Dan Xie(谢旭丹), and Dan-Bo Zhang(张旦波). Chin. Phys. B, 2023, 32(8): 080305.
[3] Variational quantum semi-supervised classifier based on label propagation
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Chong-Qiang Ye(叶崇强). Chin. Phys. B, 2023, 32(7): 070309.
[4] A quantum algorithm for Toeplitz matrix-vector multiplication
Shang Gao(高尚) and Yu-Guang Yang(杨宇光). Chin. Phys. B, 2023, 32(10): 100309.
[5] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[6] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[7] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[8] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[9] Experimental implementation of a continuous-time quantum random walk on a solid-state quantum information processor
Maimaitiyiming Tusun(麦麦提依明·吐孙), Yang Wu(伍旸), Wenquan Liu(刘文权), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(11): 110302.
[10] Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit
Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 060305.
[11] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[12] Realization of quantum Fourier transform over ZN
Fu Xiang-Qun (付向群), Bao Wan-Su (鲍皖苏), Li Fa-Da (李发达), Zhang Yu-Chao (张宇超). Chin. Phys. B, 2014, 23(2): 020306.
[13] Application of quantum algorithms to direct measurement of concurrence of a two-qubit pure state
Wang Hong-Fu(王洪福) and Zhang Shou(张寿). Chin. Phys. B, 2009, 18(7): 2642-2648.
[14] A hybrid quantum encoding algorithm of vector quantization for image compression
Pang Chao-Yang (庞朝阳), Zhou Zheng-Wei(周正威), and Guo Guang-Can(郭光灿). Chin. Phys. B, 2006, 15(12): 3039-3043.
No Suggested Reading articles found!