SPECIAL TOPIC — Recent progress on kagome metals and superconductors |
Prev
Next
|
|
|
Emergent 3×3 charge order on the Cs reconstruction of kagome superconductor CsV3Sb5 |
Xianghe Han(韩相和)1,2, Zhongyi Cao(曹钟一)1,2, Zihao Huang(黄子豪)1,2, Zhen Zhao(赵振)1,2, Haitao Yang(杨海涛)1,2,3, Hui Chen(陈辉)1,2,3,‡, and Hong-Jun Gao(高鸿钧)1,2,3,† |
1 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Hefei National Laboratory, Hefei 230088, China |
|
|
Abstract The alkali adatoms with controlled coverage on the surface have been demonstrated to effectively tune the surface band of quantum materials through in situ electron doping. However, the interplay of orderly arranged alkali adatoms with the surface states of quantum materials remains unexplored. Here, by using low-temperature scanning tunneling microscopy/spectroscopy (STM/S), we observed the emergent 3$\times$3 super modulation of electronic states on the $\sqrt 3\times\sqrt 3R30^\circ$ (R3) Cs ordered surface of kagome superconductor CsV$_{3}$Sb$_{5}$. The nondispersive 3$\times$3 superlattice at R3 ordered surface shows contrast inversion in positive and negative differential conductance maps, indicating a charge order origin. The 3$\times$3 charge order is suppressed with increasing temperature and undetectable at a critical temperature of $\sim 62$ K. Furthermore, in the Ta substituted sample CsV$_{2.6}$Ta$_{0.4}$Sb$_{5}$, where long-range 2$\times$2$\times$2 charge density wave is significantly suppressed, the 3$\times$3 charge order on the R3 ordered surface becomes blurred and much weaker than that in the undoped sample. It indicates that the 3$\times$3 charge order on the R3 ordered surface is directly correlated to the bulk charge density waves in CsV$_{3}$Sb$_{5}$. Our work provides a new platform for understanding and manipulating the cascade of charge orders in kagome superconductors.
|
Received: 28 September 2024
Revised: 02 November 2024
Accepted manuscript online: 07 November 2024
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
Fund: Project supported by the National Key Research and Development Project of China (Grant Nos. 2022YFA1204100 and 2019YFA0308500), the National Natural Science Foundation of China (Grant No. 62488201), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003), and the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700). |
Corresponding Authors:
Hong-Jun Gao, Hui Chen
E-mail: hjgao@iphy.ac.cn;hchenn04@iphy.ac.cn
|
Cite this article:
Xianghe Han(韩相和), Zhongyi Cao(曹钟一), Zihao Huang(黄子豪), Zhen Zhao(赵振), Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧) Emergent 3×3 charge order on the Cs reconstruction of kagome superconductor CsV3Sb5 2025 Chin. Phys. B 34 016801
|
[1] Starnberg H I, Brauer H E, Holleboom L J and Hughes H P 1993 Phys. Rev. Lett. 70 3111 [2] Adelung R, Brandt J, Rossnagel K, Seifarth O, Kipp L, Skibowski P, Ramírez C, Strasser T and Schattke W 2001 Phys. Rev. Lett. 86 1303 [3] Schmidt P, Murphy B, Kröger J, Jensen H and Berndt R 2006 Phys. Rev. B 74 193407 [4] Lee J, Jin K H and Yeom H W 2021 Phys. Rev. Lett. 126 196405 [5] Miyata Y, Nakayama K, Sugawara K, Sato T and Takahashi T 2015 Nat. Mater. 14 775 [6] Seo J J, Kim B Y, Kim B S, Jeong J K, Ok J M, Kim J S, Denlinger J D, Mo S K, Kim C and Kim Y K 2016 Nat. Commun. 7 11116 [7] Tang C J, Liu C, Zhou G Y, Li F S, Ding H, Li Z, Zhang D, Li Z, Song C L, Ji S H, He K, Wang L L, Ma X C and Xue Q K 2016 Phys. Rev. B 93 020507 [8] Wang Q Y, Li Z, ZhangWH, Zhang Z C, Zhang J S, LiW, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402 [9] Kyung W S, Huh S S, Koh Y Y, Choi K Y, Nakajima M, Eisaki H, Denlinger J D, Mo S K, Kim C and Kim Y K 2016 Nat. Mater. 15 1233 [10] ZhangWH, Liu X,Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T and Feng D L 2016 Nano Lett. 16 1969 [11] HossainMA, Mottershead J D F, Fournier D, Bostwick A, McChesney J L, Rotenberg E, Liang R, Hardy W N, Sawatzky G A, Elfimov I S, Bonn D A and Damascelli A 2008 Nat. Phys. 4 527 [12] Fournier D, Levy G, Pennec Y, McChesney J L, Bostwick A, Rotenberg E, Liang R, Hardy W N, Bonn D A, Elfimov I S and Damascelli A 2010 Nat. Phys. 6 905 [13] Sierda E, Huang X, Badrtdinov D I, Kiraly B, Knol E J, Groenenboom G C, Katsnelson M I, Rösner M, Wegner D and Khajetoorians A A 2023 Science 380 1048 [14] Hu Q X, Yang F Z, Wang X Y, Li J J, Liu W Y, Kong L Y, Li S L, Yan L, Xu J P and Ding H 2023 Phys. Rev. Mater. 7 034801 [15] Hu B, Ye Y, Huang Z, Han X, Zhao Z, Yang H, Chen H and Gao H J 2022 Chin. Phys. B 31 058102 [16] Tan H X, Liu Y, Wang Z and Yan B 2021 Phys. Rev. Lett. 127 046401 [17] Ortiz B R, Gomes L C, Morey J R,Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407 [18] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403 [19] Park T, Ye M X and Balents L 2021 Phys. Rev. B 104 035142 [20] Denner M M, Thomale R and Neupert T 2022 Phys. Rev. Lett. 128 099901 [21] Zhao H, Li H, Ortiz B R, Teicher SML, Park T, Ye M,Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216 [22] Jiang Y, Yu Z, Wang Y, Lu T, Meng S, Jiang K and Liu M 2022 Chin. Phys. Lett. 39 047402 [23] Wu P, Tu Y B, Wang Z Y, Yu S K, Li H Y, Ma W R, Liang Z W, Zhang Y M, Zhang X C, Li Z Y, Yang Y, Qiao Z H, Ying J J, Wu T, Shan L, Xiang Z J, Wang Z Y and Chen X H 2023 Nat. Phys. 19 1143 [24] Nie L P, Sun K, Ma W R, Song D W, Zheng L X, Liang Z W, Wu P, Yu F H, Li J, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Liu K, Xiang Z J, Ying J J, Wang Z Y, Wu T and Chen X H 2022 Nature 604 59 [25] Asaba T, Onishi A, Kageyama Y, Kiyosue T, Ohtsuka K, Suetsugu S, Kohsaka Y, Gaggl T, Kasahara Y, Murayama H, Hashimoto K, Tazai R, Kontani H, Ortiz B R, Wilson S D, Li Q, Wen H H, Shibauchi T and Matsuda Y 2024 Nat. Phys. 20 40 [26] Yang H, Ye Y, Zhao Z, Liu J, Yi X W, Zhang Y, Shi J, You J Y, Huang Z,Wang B,Wang J, Guo H, Lin X, Shen C, ZhouW, Chen H, Dong X, Su G, Wang Z and Gao H J 2024 Nat. Commun. 15 9626 [27] Hu Y, Le C C, Zhang Y H, Zhao Z, Liu J L, Ma J Z, Plumb N C, Radovic M, Chen H, Schnyder A P, Wu X X, Dong X L, Hu J P, Yang H T, Gao H J and Shi M 2023 Nat. Phys. 19 1827 [28] Li H, Zhao H, Ortiz B R, Park T, YeMX, Balents L,Wang Z Q,Wilson S D and Zeljkovic I 2022 Nat. Phys. 18 265 [29] Li H, Zhao H, Ortiz B R, Oey Y, Wang Z Q, Wilson S D and Zeljkovic I 2023 Nat. Phys. 19 637 [30] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222 [31] Zhou S and Wang Z 2022 Nat. Commun. 13 7288 [32] Chen H and Gao H J 2023 Nature 618 910 [33] Chen H, Hu B, Ye Y, Yang H and Gao H J 2022 Chin. Phys. B 31 097405 [34] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [35] Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z Y W, Wang N N, Sun J P, Zhao Z, Li D, Liu S B, Zhang H, Chen H, Jin K, Cheng J G, Yu L, Zhou F, Dong X L, Hu J P, Gao H J and Zhao Z X 2021 Chin. Phys. Lett. 38 057403 [36] Yang H T, Huang Z H, Zhang Y H, Zhao Z, Shi J N, Luo H L, Zhao L, Qian G J, Tan H X, Hu B, Zhu K, Lu Z Y W, Zhang H, Sun J P, Cheng J G, Shen C M, Lin X, Yan B H, Zhou X J, Wang Z Q, Pennycook S J, Chen H, Dong X L, Zhou W and Gao H J 2022 Sci. Bull. 67 2176 [37] Luo Y, Han Y L, Liu J J, Chen H, Huang Z H, Huai LW, Li H Y,Wang B Q, Shen J C, Ding S H, Li Z Y, Peng S T, Wei Z Y, Miao Y, Sun X P, Ou Z P, Xiang Z J, Hashimoto M, Lu D H, Yao Y G, Yang H T, Chen X H, Gao H J, Qiao Z H, Wang Z W and He J F 2023 Nat. Commun. 14 3819 [38] Zhao Z, Wang R, Zhang Y, Zhu K, Yu W, Han Y, Liu J, Hu G, Guo H, Lin X, Dong X, Chen H, Yang H and Gao H J 2024 Chin. Phys. B 33 077406 [39] Hu B, Chen H, Ye Y, Huang Z, Han X, Zhao Z, Xiao H, Lin X, Yang H, Wang Z and Gao H J 2024 Nat. Commun. 15 6109 [40] Huang Z H, Han X, Zhao Z, Liu J, Li P, Tan H, Wang Z, Yao Y, Yang H, Yan B, Jiang K, Hu J, Wang Z, Chen H and Gao H J 2024 Sci. Bull. 69 885 [41] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026 [42] Song B, Ying T, Wu X, Xia W, Yin Q, Zhang Q, Song Y, Yang X, Guo J, Gu L, Chen X, Hu J, Schnyder A P, Lei H, Guo Y and Li S 2023 Nat. Commun. 14 2492 [43] Huang Z H, Han X H, Zhao Z, Yang H T, Chen H and Gao H J 2024 Nano. Lett. 24 6023 [44] Kato T, Li Y K, Liu M, Nakayama K, Wang Z W, Souma S, Kitamura M, Horiba K, Kumigashira H, Takahashi T, Yao Y G and Sato T 2023 Phys. Rev. B 107 245143 [45] Kato T, Li Y K, Nakayama K, Wang Z W, Souma S, Kitamura M, Horiba K, Kumigashira H, Takahashi T and Sato T 2022 Phys. Rev. B 106 L121112 [46] Nakayama K, Li Y K, Kato T, Liu M, Wang Z W, Takahashi T, Yao Y G and Sato T 2022 Phys. Rev. X 12 011001 [47] Kato T, Nakayama K, Li Y K, Wang Z W, Sugawara K, Tanaka K, Takahashi T, Yao Y G and Sato T 2024 Adv. Sci. 11 2309003 [48] Yu J, Xu Z, Xiao K, Yuan Y, Yin Q, Hu Z, Gong C, Guo Y, Tu Z, Tang P, Lei H, Xue Q K and Li W 2022 Nano Lett. 22 918 [49] Jin F, Ren W, Tan M S, Xie M T, Lu B R, Zhang Z, Ji J T and Zhang Q M 2024 Phys. Rev. Lett. 132 066501 [50] Hardy F, Eder R, Jackson M, Aoki D, Paulsen C, Wolf T, Burger P, Böhmer A, Schweiss P, Adelmann P, Fisher R A and Meingast C 2014 J. Phys. Soc. Jpn. 83 014711 [51] Cao L, Liu W, Li G, Dai G, Zheng Q, Wang Y, Jiang K, Zhu S, Huang L, Kong L, Yang F, Wang X, Zhou W, Lin X, Hu J, Jin C, Ding H and Gao H J 2021 Nat. Commun. 12 6312 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|