Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087501    DOI: 10.1088/1674-1056/adce97
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of interlayer interaction on magnon properties of vdW honeycomb heterostructures

Jun Shan(单俊)1,2, Lichuan Zhang(张礼川)1,2,†, Huasu Fu(付华宿)1,2, Yuee Xie(谢月娥)1,2,‡, Yuriy Mokrousov3,4, and Yuanping Chen(陈元平)1,2,§
1 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China;
2 Jiangsu Engineering Research Center on Quantum Perception and Intelligent Detection of Agricultural Information, Zhenjiang 212013, China;
3 Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Jülich 52425, Germany;
4 Institute of Physics, Johannes Gutenberg University Mainz, Mainz 55099, Germany
Abstract  Interlayer interactions in bilayer or multilayer electron systems have been studied extensively, and many exotic physical phenomena have been revealed. However, systematic investigations of the impact of interlayer interactions on magnonic physics are very few. Here, we use a van der Waals (vdW) honeycomb heterostructure as a platform to investigate the modulation of magnon properties in honeycomb AA- and AB-stacking heterostructures with ferromagnetic and antiferromagnetic interlayer interactions, including topological phases and thermal Hall conductivity. Our results reveal that interlayer interactions play a crucial role in modulating the magnonic topology and Hall transport properties of magnetic heterostructures, with potential for experimental realization.
Keywords:  vdW honeycomb heterostructure      magnon      topological phase transition      thermal Hall effect  
Received:  09 February 2025      Revised:  05 April 2025      Accepted manuscript online:  21 April 2025
PACS:  75.10.-b (General theory and models of magnetic ordering)  
  75.30.Ds (Spin waves)  
  75.40.Gb (Dynamic properties?)  
  02.40.Pc (General topology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12404051, 12347156, 12174157, 12074150, and 12174158), the National Key Research and Development Program of China (Grant No. 2022YFA1405200), the Natural Science Foundation of Jiangsu Province (Grant No. BK20230516), and the Scientific Research Project of Jiangsu University (Grant No. 550171001). Y. M. gratefully acknowledges financial support provided by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – TRR 288/2 – 422213477 (project B06).
Corresponding Authors:  Lichuan Zhang, Yuee Xie, Yuanping Chen     E-mail:  Lichuan.zhang@ujs.edu.cn;yueex@ujs.edu.cn;chenyp@ujs.edu.cn

Cite this article: 

Jun Shan(单俊), Lichuan Zhang(张礼川), Huasu Fu(付华宿), Yuee Xie(谢月娥), Yuriy Mokrousov, and Yuanping Chen(陈元平) Effect of interlayer interaction on magnon properties of vdW honeycomb heterostructures 2025 Chin. Phys. B 34 087501

[1] Bloch F 1930 Z. Phys. 61 206
[2] Majlis N 2007 The Quantum Theory of Magnetism
[3] Bozhko D A, Serga A A, Clausen P, Vasyuchka V I, Heussner F, Melkov G A, Pomyalov A, L’vov V S and Hillebrands B 2016 Nat. Phys. 12 1057
[4] Clausen P, Bozhko D A, Vasyuchka V I, Hillebrands B, Melkov G A and Serga A A 2015 Phys. Rev. B 91 220402
[5] Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B and Slavin A N 2006 Nature 443 430
[6] Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S and Saitoh E 2010 Nature 464 262
[7] Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N and Tokura Y 2010 Science 329 297
[8] Hirschberger M, Chisnell R, Lee Y S and Ong N P 2015 Phys. Rev. Lett. 115 106603
[9] Li Z D, Zhang R F, Shan J, Alahmed L, Xu A L, Chen Y P, Yuan J R, Cheng X M, Miao X S, Wen J J, Mokrousov Y, Lee Y S, Zhang L C and Li P 2024 Nano Lett. 24 2415
[10] Chisnell R, Helton J S, Freedman D E, Singh D K, Demmel F, Stock C, Nocera D G and Lee Y S 2016 Phys. Rev. B 93 214403
[11] Chen L B, Chung J H, Gao B, Chen T, Stone M B, Kolesnikov A I, Huang Q Z and Dai P C 2018 Phys. Rev. X 8
[12] Zhu F F, Zhang L C, Wang X, dos Santos F J, Song J D, Mueller T, Schmalzl K, Schmidt W F, Ivanov A, Park J T, Xu J H, Ma J, Lounis S, Blügel S, Mokrousov Y, Su Y X and Brückel T 2021 Sci. Adv. 7 eabi7532
[13] Bao S, Wang J H, Wang W, Cai Z W, Li S C, Ma Z, Wang D, Ran K J, Dong Z Y, Abernathy D L, Yu S L, Wan X G, Li J X and Wen J S 2018 Nat. Commun. 9 2591
[14] Yao W L, Li C Y, Wang L C, Xue S J, Dan Y, Iida K, Kamazawa K, Li K K, Fang C and Li Y 2018 Nat. Phys. 14 1011
[15] Zhang H D, Xu C Q, Carnahan C, Sretenovic M, Suri N, Di X and Ke X L 2021 Phys. Rev. Lett. 127 247202
[16] Wei X Y, Santos O A, Lusero C H S, Bauer G E W, Ben Youssef J and van Wees B J 2022 Nat. Mater. 21 1352
[17] Li F Y, Li Y D, Kim Y B, Balents L, Yu Y and Chen G 2016 Nat. Commun. 7 12691
[18] Mook A, Henk J and Mertig I 2016 Phys. Rev. Lett. 117 157204
[19] Zyuzin V A and Kovalev A A 2016 Phys. Rev. Lett. 117 217203
[20] Zhang L C, Go D, Hanke J P, Buhl P M, Grytsiuk S, Blügel S, Lux F R and Mokrousov Y 2020 Commun. Phys. 3 227
[21] Wang Q, Chumak A V and Pirro P 2021 Nat. Commun. 12 2636
[22] Pirro P, Vasyuchka V I, Serga A A and Hillebrands B 2021 Nat. Rev. Mater. 6 1114
[23] Chen J, Zhang M, Xu B, Sun J and Mujumdar A S 2020 Trends Food Sci. Technol. 105 251
[24] Yamamoto K, Xu M, Puebla J, Otani Y and Maekawa S 2022 J. Magn. Magn. Mater. 545 168672
[25] Chumak A 2015 Magnonics view of applications in logic
[26] Mook A, Henk J and Mertig I 2014 Phys. Rev. B 89 134409
[27] Xing Y H, Chen H, Xu N, Li X and Zhang L F 2022 Phys. Rev. B 105 104409
[28] Mook A, Henk J and Mertig I 2014 Phys. Rev. B 90 0244412
[29] Bai Y X, Zhang L C, Mao N, Li R H, Chen Z Q, Dai Y, Huang B B and Niu C W 2024 ACS Nano 18 13377
[30] Habel J, Mook A, Willsher J and Knolle J 2024 Phys. Rev. B 109 024441
[31] Kim H and Kim S K 2022 Phys. Rev. B 106 104430
[32] Owerre S A 2016 J. Phys.: Condens. Matter 28 436003
[33] Kim H, Saito T, Yang H, Ishizuka H, Coak M J, Lee J H, Sim H, Oh Y S, Nagaosa N and Park J G 2024 Nat. Commun. 15 243
[34] Zhang M H and Yao D X 2023 Phys. Rev. B 107 024408
[35] Zhang M H and Yao D X 2023 Phys. Rev. B 108 144407
[36] Kawano M and Hotta C 2019 Phys. Rev. B 99 054422
[37] Zhuo F J, Kang J, Cheng Z X and Manchon A 2024 Phys. Rev. B 109 054412
[38] Jiang W, Kang M, Huang H Q, Xu H X, Low T and Liu F 2019 Phys. Rev. B 99 125131
[39] Cenker J, Huang B, Suri N, Thijssen P, Miller A, Song T, Taniguchi T, Watanabe K, McGuire M A, Xiao D and Xu X 2021 Nat. Phys. 17 20
[40] Banerjee A, Bridges C A, Yan J Q, Aczel A A, Li L, Stone M B, Granroth G E, Lumsden M D, Yiu Y, Knolle J, Bhattacharjee S, Kovrizhin D L, Moessner R, Tennant D A, Mandrus D G and Nagler S E 2016 Nat. Mater. 15 733
[41] Kasahara Y, Ohnishi T, Mizukami Y, Tanaka O, Ma S, Sugii K, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T and Matsuda Y 2018 Nature 559 227
[42] Kitaev A 2006 Ann. Phys. 321 2
[43] Qi X L, Wu Y S and Zhang S C 2006 Phys. Rev. B 74 085308
[44] Utermohlen F G and Trivedi N 2021 Phys. Rev. B 103 155124
[45] Mochizuki M, Yu X Z, Seki S, Kanazawa N, Koshibae W, Zang J, Mostovoy M, Tokura Y and Nagaosa N 2014 Nat. Mater. 13 241
[46] Chen K, Luo Q, Xi B, Luo H G and Zhao J 2024 Phys. Rev. B 109 174415
[47] Liu S, Wang C, Jeon H, Kim J and Cho J H 2022 Phys. Rev. B 105 L041406
[48] He Z, Dou K, Du W, Dai Y, Huang B and Ma Y 2023 Nano Lett. 23 312
[49] Zhao Y, Qiao J, Yu P, Hu Z, Lin Z, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater. 28 2399
[50] Liu J, Wang H, Fang C, Fu L and Qian X 2017 Nano Lett. 17 467
[51] Zhan D, Yan J X, Lai L F, Ni Z H, Liu L and Shen Z X 2012 Adv. Mater. 24 4055
[52] Qian S, Li Y and Liu C C 2023 Phys. Rev. B 108 L241406
[53] Liu Y B, Zhang Y, Chen W and Yang F 2022 Phys. Rev. B
[54] Song Z, Wang Z, Shi W, Li G, Fang C and Bernevig B A 2019 Phys. Rev. Lett. 123 036401
[55] Liu B B, Zeng X T, Chen C, Chen Z and Sheng X L 2022 Phys. Rev. B 106 035153
[56] Pathak S, Rakib T, Hou R, Nevidomskyy A, Ertekin E, Johnson H T and Wagner L K 2022 Phys. Rev. B 105 115141
[57] Xu Y, Ray A, Shao Y T, Jiang S, Lee K, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Muller D A, Mak K F and Shan J 2022 Nat. Nanotechnol. 17 143
[58] de Lima F C, Ferreira G J and Miwa R H 2017 Phys. Rev. B 96 115426
[59] Sisakht E T, Fazileh F, Zare M H, Zarenia M and Peeters F M 2016 Phys. Rev. B 94 085417
[60] Ghader D 2021 New J. Phys. 23 053022
[61] Zhang L C, Zhu F, Go D, Lux F R, dos Santos F J, Lounis S, Su Y, Blügel S and Mokrousov Y 2021 Phys. Rev. B 103 134414
[62] Laurell P and Fiete G A 2018 Phys. Rev. B 98 094419
[63] Toth S and Lake B 2015 J. Phys.: Condens. Matter 27 166002
[64] dos Santos F J, dos Santos Dias M, Guimarães F S, Bouaziz J and Lounis S 2018 Phys. Rev. B 97 024431
[65] Xu C, Feng J, Xiang H and Bellaiche L 2018 npj Comput. Mater. 4 57
[66] Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, Patterson C L, Yang F, Taniguchi T, Watanabe K and Young A F 2022 Science 375 774
[67] Kadi F and Malic E 2014 Phys. Rev. B 89 045419
[68] Johansson L I, Armiento R, Avila J, Xia C, Lorcy S, Abrikosov I A, Asensio M C and Virojanadara C 2014 Sci. Rep. 4 4157
[69] de la Barrera S C, Aronson S, Zheng Z, Watanabe K, Taniguchi T, Ma Q, Jarillo-Herrero P and Ashoori R 2022 Nat. Phys. 18 771
[70] Xue Y, Zhang Z, Wu Z and Song C 2022 J. Appl. Phys. 132 053901
[71] Lee I, Utermohlen F G, Weber D, Hwang K, Zhang C, van Tol J, Goldberger J E, Trivedi N and Hammel P C 2020 Phys. Rev. Lett. 124 017201
[72] Takagi H, Takayama T, Jackeli G, Khaliullin G and Nagler S E 2019 Nat. Rev. Phys. 1 264
[73] Soriano D, Cardoso C and Fernández-Rossier J 2019 Solid State Commun. 299 113662
[1] Role of symmetry in antiferromagnetic topological insulators
Sahar Ghasemi and Morad Ebrahimkhas. Chin. Phys. B, 2025, 34(7): 077302.
[2] First- and second-order magnonic topologies in the ferromagnetic breathing SSH model modulated by non-Hermitian effects
Huasu Fu(付华宿), Lichuan Zhang(张礼川), Rami Mrad, Yuee Xie(谢月娥), and Yuanping Chen(陈元平). Chin. Phys. B, 2025, 34(6): 067506.
[3] A two-stage injection locking amplifier based on a cavity magnonic oscillator
Mun Kim, Chunlei Zhang, Chenyang Lu, Jacob Burgess, and Can-Ming Hu. Chin. Phys. B, 2025, 34(6): 067104.
[4] Random flux manipulating topological phase transitions in Chern insulators
Jinkun Wang(王锦坤) and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2025, 34(6): 067301.
[5] Magnon behavior in YIG film under microwave excitation investigated by Brillouin light scattering
Guofu Xu(徐国服), Kang An(安康), Wenjun Ma(马文俊), Xiling Li(李喜玲), C. K. Ong, Chi Zhang(张驰), and Guozhi Chai(柴国志). Chin. Phys. B, 2025, 34(6): 067507.
[6] Bifurcation of the bound states in the continuum in a dissipative cavity magnonic system
Xinlin Mi(米锌林), Lijun Yan(闫丽君), Bimu Yao(姚碧霂), Shishen Yan(颜世申), Jinwei Rao(饶金威), and Lihui Bai(柏利慧). Chin. Phys. B, 2025, 34(6): 067508.
[7] Magnon-magnon coupling in noncollinear synthetic antiferromagnets
Tengfei Zhang(张腾飞), Quwen Wang(王曲文), Min Chen(陈敏), Jie Dong(董洁), Qian Zhao(赵乾), Zimu Li(李子木), Qingfang Liu(刘青芳), Jianbo Wang(王建波), and Jinwu Wei(魏晋武). Chin. Phys. B, 2025, 34(5): 057201.
[8] Nonreciprocal microwave-optical entanglement in Kerr-modified cavity optomagnomechanics
Ming-Yue Liu(刘明月), Yuan Gong(龚媛), Jiaojiao Chen(陈姣姣), Yan-Wei Wang(王艳伟), and Wei Xiong(熊伟). Chin. Phys. B, 2025, 34(5): 057202.
[9] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
[10] Strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii-Moriya interaction and applications on spin-wave devices
Chuhan Zhou(周楚涵), Xiaotian Jiao(焦晓天), Jiaxi Xu(徐佳熙), Zhaonian Jin(金兆年), Lin Chen(陈琳), and Zhikuo Tao(陶志阔). Chin. Phys. B, 2025, 34(2): 027501.
[11] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[12] Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes
Tijjani Abdulrazak, Xuejuan Liu(刘雪娟), Zhejunyu Jin(金哲珺雨), Yunshan Cao(曹云姗), and Peng Yan(严鹏). Chin. Phys. B, 2024, 33(8): 087503.
[13] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[14] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[15] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
No Suggested Reading articles found!