Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087401    DOI: 10.1088/1674-1056/add908
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Superconductivity in YbN4H12 under low pressures

Xiang Wang(汪翔)1, Chenlong Xie(谢晨龙)1, Haohao Hong(洪浩豪)1, Yanliang Wei(魏衍亮)1, Zhao Liu(刘召)1,†, and Tian Cui(崔田)1,2,‡
1 Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  The emergence of high-temperature superconductivity in hydrogen-rich compounds has opened up promising avenues for investigating unique hydrogen motifs that exhibit exceptional superconducting properties. Nevertheless, the requirement for extremely high synthesis pressures poses significant barriers to experimentally probing potential physical properties. Here, we have designed a structure wherein NH$_{3}$ tetrahedra are intercalated into the body-centered cubic lattice of Yb, resulting in the formation of Yb(NH$_{3}$)$_{4}$. Our first-principles calculations reveal that metallic behavior emerges from the ionization of sp$^{3}$-hybridized $\sigma$-bonds in NH$_{3}$, which is enabled by electron transfer from ytterbium orbitals to NH$_{3}$ anti-bonding $\sigma$-orbitals. A distinctive feature of this structure is the Fermi surface nesting, which leads to optical phonon softening and consequently enhances electron-phonon coupling. The subsequent density-functional theory (DFT) calculations demonstrate that this $I$-43$m$ phase of Yb(NH$_{3}$)$_{4}$ exhibits a superconducting critical temperature ($T_{\rm c}$) of 17.32 K under a modest pressure of 10 GPa. Our investigation presents perspectives on achieving phonon-mediated superconductivity at relatively low pressures, thereby opening up extensive possibilities for the attainment of high-temperature superconductivity in hydrogen-based superconducting systems with specific ionized molecular groups.
Keywords:  superconductivity      hydride      low pressures      ionized molecular groups  
Received:  30 March 2025      Revised:  10 May 2025      Accepted manuscript online:  15 May 2025
PACS:  74.25.-q (Properties of superconductors)  
  74.25.Dw (Superconductivity phase diagrams)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406200 and 2022YFA1405500), the National Natural Science Foundation of China (Grant Nos. 12304021 and 52072188), Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ23A040004), Program for Science and Technology Innovation Team in Zhejiang (Grant No. 2021R01004),the Natural Science Foundation of Ningbo (Grant No. 2022J091), and the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT 15R23).
Corresponding Authors:  Zhao Liu, Tian Cui     E-mail:  liuzhao@nbu.edu.cn;cuitian@nbu.edu.cn

Cite this article: 

Xiang Wang(汪翔), Chenlong Xie(谢晨龙), Haohao Hong(洪浩豪), Yanliang Wei(魏衍亮), Zhao Liu(刘召), and Tian Cui(崔田) Superconductivity in YbN4H12 under low pressures 2025 Chin. Phys. B 34 087401

[1] Van D D and Kes P 2010 Physics Today 63 38
[2] Wigner E and Huntington H B 1935 J. Chem. Phys.3 764
[3] McMahon J M, MoralesMA, Pierleoni C and Ceperley D M 2012 Rev. Mod. Phys. 84 1607
[4] Dalladay-Simpson P, Howie R T and Gregoryanz E 2016 Nature 529 63
[5] Loubeyre P, Occelli F and Dumas P 2020 Nature 577 631
[6] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[7] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968
[8] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[9] Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[10] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001
[11] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[12] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463
[13] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[14] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[15] He X, Zhang C L, Li ZW, Zhang S J, Min B S, Zhang J, Lu K, Zhao J F, Shi L C, Peng Y,Wang X C, Feng S M, Song J,Wang L H, Prakapenka V B, Chariton S, Liu H Z and Jin C Q 2023 Chin. Phys. Lett. 40 057404
[16] Kawai N and Endo S 1970 Rev. Sci. Instrum. 41 1178
[17] Ishii T, Shi L, Huang R, Tsujino N, Druzhbin D, Myhill R, Li Y, Wang L, Yamamoto T, Miyajima N, Kawazoe T, Nishiyama N, Higo Y, Tange Y and Katsura T 2016 Rev. Sci. Instrum. 87 024501
[18] Irifune T, Isobe F and Shinmei T 2014 Phys. Earth Planet. Inter. 228 255
[19] Song Y, Bi J, Nakamoto Y, Shimizu K, Liu H, Zou B, Liu G, Wang H and Ma Y 2023 Phys. Rev. Lett. 130 266001
[20] Chen W, Huang X, Semenok D V, Chen S, Zhou D, Zhang K, Oganov A R and Cui T 2023 Nat. Commun. 14 2660
[21] Li B, Yang Y, Fan Y, Zhu C, Liu S and Shi Z 2023 Chin Phys. Lett. 40 097402
[22] Gao K, CuiW, Shi J, Durajski A P, Hao J, Botti S, Marques M A L and Li Y 2024 Phys. Rev. B 109 014501
[23] Gao M, Yan X, Lu Z and Xiang T 2021 Phys. Rev. B 104 L100504
[24] Li S, Wang H, Sun W, Lu C and Peng F 2022 Phys. Rev. B 105 224107
[25] Liu P, Liu Y, Liu Z and Cui T 2024 Mater. Today Phys. 43 101403
[26] Song H, Zhang Z, Cui T, Pickard C J, Kresin V Z and Duan D 2021 Chin Phys. Lett. 38 107401
[27] Zhao Y, Liu S, Liu J, Gu T, Hao J, Shi J, Cui W and Li Y 2024 Chin Phys. B 33 127101
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[30] Blöchl P E 1994 Phys. Rev. B 50 17953
[31] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[32] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502
[33] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[34] Wang X and Chen J 2021 J Supercond Nov. Magn. 34 2229
[35] Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001
[36] Boeri L, Hennig R, Hirschfeld P, et al. 2022 J. Phys.: Condens. Matter 34 183002
[37] Sun W, Bartel C J, Arca E, Bauers S R, Matthews B, Orvañanos B, Chen B R, Toney M F, Schelhas L T, Tumas W, Tate J, Zakutayev A, Lany S, Holder A M and Ceder G 2019 Nat. Mater. 18 732
[38] Lim J, Hire A C, Quan Y, Kim J S, Xie S R, Sinha S, Kumar R S, Popov D, Park C, Hemley R J, Hamlin J J, Hennig R G, Hirschfeld P J and Stewart G R 2022 Nat. Commun. 13 7901
[39] Xie H, Yao Y, Feng X, Duan D, Song H, Zhang Z, Jiang S, Redfern S A T, Kresin V Z, Pickard C J and Cui T 2020 Phys. Rev. Lett. 125 217001
[40] Liang X, Wei X, Zurek E, Bergara A, Li P, Gao G and Tian Y 2024 Matter Radiat. Extrem. 9 018401
[41] Zhang X, Zhao Y and Yang G 2022 WIREs Comput. Mol. Sci. 12 e1582
[42] Liu Z, Zhuang Q, Tian F, Duan D, Song H, Zhang Z, Li F, Li H, Li D and Cui T 2021 Phys. Rev. Lett. 127 157002
[1] Strain tuning of charge density wave and Mott-insulating states in monolayer VTe2
Wenqian Tu(涂文倩), Run Lv(吕润), Dingfu Shao(邵定夫), Yuping Sun(孙玉平), and Wenjian Lu(鲁文建). Chin. Phys. B, 2025, 34(9): 097103.
[2] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[3] A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure
Yan Yan(闫岩), Chengao Jiang(蒋成澳), Wen Gao(高稳), Rui Chen(陈蕊), Xiaodong Yang(杨晓东), Runru Liu(刘润茹), Lihua Yang(杨丽华), and Lili Wang(王丽丽). Chin. Phys. B, 2025, 34(8): 086201.
[4] Ground state of electron-doped t-t0-J model on cylinders: An investigation of finite size and boundary condition effects
Yang Shen(沈阳), Xiangjian Qian(钱湘坚), and Mingpu Qin(秦明普). Chin. Phys. B, 2025, 34(8): 087105.
[5] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[6] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[7] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[8] Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice
Hao Zhang(张浩), Shaojun Dong(董少钧), and Lixin He(何力新). Chin. Phys. B, 2025, 34(7): 077102.
[9] Momentum-dependent anisotropy of the charge density wave gap in quasi-1D ZrTe3-xSex (x = 0.015)
Renjie Zhang(张任杰), Yudong Hu(胡裕栋), Yiwei Cheng(程以伟), Yigui Zhong(钟益桂), Xuezhi Chen(陈学智), Junqin Li(李俊琴), Kozo Okazaki, Yaobo Huang(黄耀波), Tian Shang(商恬), Shifeng Jin(金士锋), Baiqing Lv(吕佰晴), and Hong Ding(丁洪). Chin. Phys. B, 2025, 34(7): 077106.
[10] Pressure-induced superconductivity in Bi-doped BaFe2(As1-xBix)2 single crystals
Chang Su(苏畅), Wuhao Chen(陈吴昊), Wenjing Cheng(程文静), Jiabin Si(司佳斌), Qunfei Zheng(郑群飞), Jinlong Zhu(朱金龙), Lingyi Xing(邢令义), and Ying Liu(刘影). Chin. Phys. B, 2025, 34(6): 067403.
[11] Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets
Jingyuan Qu(曲静远), Guojing Hu(胡国静), Cuili Xiang(向翠丽), Hui Guo(郭辉), Senhao Lv(吕森浩), Yechao Han(韩烨超), Guoyu Xian(冼国裕), Qi Qi(齐琦), Zhen Zhao(赵振), Ke Zhu(祝轲), Xiao Lin(林晓), Lihong Bao(鲍丽宏), Yongjin Zou(邹勇进), Lixian Sun(孙立贤), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(6): 067401.
[12] Anisotropic two-band α-model and its application to layered chalcogenide superconductor NbSe2
Jiang-Ning Zhang(张江宁), Guo Wang(王果), Tian-Yi Han(韩天意), and Hai Huang(黄海). Chin. Phys. B, 2025, 34(5): 057401.
[13] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
[14] Strain-modulated superconductivity of monolayer Tc2B2
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田), and Defang Duan(段德芳). Chin. Phys. B, 2025, 34(4): 047104.
[15] Superconductivity in titanium probed by AC magnetic susceptibility to 120 GPa
Jing Song(宋静), Hongyu Liu(刘红玉), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(4): 047403.
No Suggested Reading articles found!