|
Special Issue:
SPECIAL TOPIC — Structures and properties of materials under high pressure
|
| SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
Superconductivity in YbN4H12 under low pressures |
| Xiang Wang(汪翔)1, Chenlong Xie(谢晨龙)1, Haohao Hong(洪浩豪)1, Yanliang Wei(魏衍亮)1, Zhao Liu(刘召)1,†, and Tian Cui(崔田)1,2,‡ |
1 Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; 2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China |
|
|
|
|
Abstract The emergence of high-temperature superconductivity in hydrogen-rich compounds has opened up promising avenues for investigating unique hydrogen motifs that exhibit exceptional superconducting properties. Nevertheless, the requirement for extremely high synthesis pressures poses significant barriers to experimentally probing potential physical properties. Here, we have designed a structure wherein NH$_{3}$ tetrahedra are intercalated into the body-centered cubic lattice of Yb, resulting in the formation of Yb(NH$_{3}$)$_{4}$. Our first-principles calculations reveal that metallic behavior emerges from the ionization of sp$^{3}$-hybridized $\sigma$-bonds in NH$_{3}$, which is enabled by electron transfer from ytterbium orbitals to NH$_{3}$ anti-bonding $\sigma$-orbitals. A distinctive feature of this structure is the Fermi surface nesting, which leads to optical phonon softening and consequently enhances electron-phonon coupling. The subsequent density-functional theory (DFT) calculations demonstrate that this $I$-43$m$ phase of Yb(NH$_{3}$)$_{4}$ exhibits a superconducting critical temperature ($T_{\rm c}$) of 17.32 K under a modest pressure of 10 GPa. Our investigation presents perspectives on achieving phonon-mediated superconductivity at relatively low pressures, thereby opening up extensive possibilities for the attainment of high-temperature superconductivity in hydrogen-based superconducting systems with specific ionized molecular groups.
|
Received: 30 March 2025
Revised: 10 May 2025
Accepted manuscript online: 15 May 2025
|
|
PACS:
|
74.25.-q
|
(Properties of superconductors)
|
| |
74.25.Dw
|
(Superconductivity phase diagrams)
|
| |
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
| Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406200 and 2022YFA1405500), the National Natural Science Foundation of China (Grant Nos. 12304021 and 52072188), Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ23A040004), Program for Science and Technology Innovation Team in Zhejiang (Grant No. 2021R01004),the Natural Science Foundation of Ningbo (Grant No. 2022J091), and the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT 15R23). |
Corresponding Authors:
Zhao Liu, Tian Cui
E-mail: liuzhao@nbu.edu.cn;cuitian@nbu.edu.cn
|
Cite this article:
Xiang Wang(汪翔), Chenlong Xie(谢晨龙), Haohao Hong(洪浩豪), Yanliang Wei(魏衍亮), Zhao Liu(刘召), and Tian Cui(崔田) Superconductivity in YbN4H12 under low pressures 2025 Chin. Phys. B 34 087401
|
[1] Van D D and Kes P 2010 Physics Today 63 38 [2] Wigner E and Huntington H B 1935 J. Chem. Phys.3 764 [3] McMahon J M, MoralesMA, Pierleoni C and Ceperley D M 2012 Rev. Mod. Phys. 84 1607 [4] Dalladay-Simpson P, Howie R T and Gregoryanz E 2016 Nature 529 63 [5] Loubeyre P, Occelli F and Dumas P 2020 Nature 577 631 [6] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002 [7] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968 [8] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73 [9] Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990 [10] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001 [11] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528 [12] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463 [13] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73 [14] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528 [15] He X, Zhang C L, Li ZW, Zhang S J, Min B S, Zhang J, Lu K, Zhao J F, Shi L C, Peng Y,Wang X C, Feng S M, Song J,Wang L H, Prakapenka V B, Chariton S, Liu H Z and Jin C Q 2023 Chin. Phys. Lett. 40 057404 [16] Kawai N and Endo S 1970 Rev. Sci. Instrum. 41 1178 [17] Ishii T, Shi L, Huang R, Tsujino N, Druzhbin D, Myhill R, Li Y, Wang L, Yamamoto T, Miyajima N, Kawazoe T, Nishiyama N, Higo Y, Tange Y and Katsura T 2016 Rev. Sci. Instrum. 87 024501 [18] Irifune T, Isobe F and Shinmei T 2014 Phys. Earth Planet. Inter. 228 255 [19] Song Y, Bi J, Nakamoto Y, Shimizu K, Liu H, Zou B, Liu G, Wang H and Ma Y 2023 Phys. Rev. Lett. 130 266001 [20] Chen W, Huang X, Semenok D V, Chen S, Zhou D, Zhang K, Oganov A R and Cui T 2023 Nat. Commun. 14 2660 [21] Li B, Yang Y, Fan Y, Zhu C, Liu S and Shi Z 2023 Chin Phys. Lett. 40 097402 [22] Gao K, CuiW, Shi J, Durajski A P, Hao J, Botti S, Marques M A L and Li Y 2024 Phys. Rev. B 109 014501 [23] Gao M, Yan X, Lu Z and Xiang T 2021 Phys. Rev. B 104 L100504 [24] Li S, Wang H, Sun W, Lu C and Peng F 2022 Phys. Rev. B 105 224107 [25] Liu P, Liu Y, Liu Z and Cui T 2024 Mater. Today Phys. 43 101403 [26] Song H, Zhang Z, Cui T, Pickard C J, Kresin V Z and Duan D 2021 Chin Phys. Lett. 38 107401 [27] Zhao Y, Liu S, Liu J, Gu T, Hao J, Shi J, Cui W and Li Y 2024 Chin Phys. B 33 127101 [28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [29] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [30] Blöchl P E 1994 Phys. Rev. B 50 17953 [31] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [32] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502 [33] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 [34] Wang X and Chen J 2021 J Supercond Nov. Magn. 34 2229 [35] Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001 [36] Boeri L, Hennig R, Hirschfeld P, et al. 2022 J. Phys.: Condens. Matter 34 183002 [37] Sun W, Bartel C J, Arca E, Bauers S R, Matthews B, Orvañanos B, Chen B R, Toney M F, Schelhas L T, Tumas W, Tate J, Zakutayev A, Lany S, Holder A M and Ceder G 2019 Nat. Mater. 18 732 [38] Lim J, Hire A C, Quan Y, Kim J S, Xie S R, Sinha S, Kumar R S, Popov D, Park C, Hemley R J, Hamlin J J, Hennig R G, Hirschfeld P J and Stewart G R 2022 Nat. Commun. 13 7901 [39] Xie H, Yao Y, Feng X, Duan D, Song H, Zhang Z, Jiang S, Redfern S A T, Kresin V Z, Pickard C J and Cui T 2020 Phys. Rev. Lett. 125 217001 [40] Liang X, Wei X, Zurek E, Bergara A, Li P, Gao G and Tian Y 2024 Matter Radiat. Extrem. 9 018401 [41] Zhang X, Zhao Y and Yang G 2022 WIREs Comput. Mol. Sci. 12 e1582 [42] Liu Z, Zhuang Q, Tian F, Duan D, Song H, Zhang Z, Li F, Li H, Li D and Cui T 2021 Phys. Rev. Lett. 127 157002 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|