Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 056802    DOI: 10.1088/1674-1056/acb9e4
Special Issue: SPECIAL TOPIC — Smart design of materials and design of smart materials
SPECIAL TOPIC—Smart design of materials and design of smart materials Prev   Next  

Reconstruction and stability of Fe3O4(001) surface: An investigation based on particle swarm optimization and machine learning

Hongsheng Liu(柳洪盛), Yuanyuan Zhao(赵圆圆), Shi Qiu(邱实), Jijun Zhao(赵纪军), and Junfeng Gao(高峻峰)
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Dalian University of Technology), Ministry of Education, Dalian 116024, China
Abstract  Magnetite nanoparticles show promising applications in drug delivery, catalysis, and spintronics. The surface of magnetite plays an important role in these applications. Therefore, it is critical to understand the surface structure of Fe3O4 at atomic scale. Here, using a combination of first-principles calculations, particle swarm optimization (PSO) method and machine learning, we investigate the possible reconstruction and stability of Fe3O4(001) surface. The results show that besides the subsurface cation vacancy (SCV) reconstruction, an A layer with Fe vacancy (A-layer-VFe) reconstruction of the (001) surface also shows very low surface energy especially at oxygen poor condition. Molecular dynamics simulation based on the iron-oxygen interaction potential function fitted by machine learning further confirms the thermodynamic stability of the A-layer-VFe reconstruction. Our results are also instructive for the study of surface reconstruction of other metal oxides.
Keywords:  surface reconstruction      magnetite surface      particle swarm optimization      machine learning  
Received:  15 January 2023      Revised:  02 February 2023      Accepted manuscript online:  08 February 2023
PACS:  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004064, 12074053, and 91961204), the Fundamental Research Funds for the Central Universities (Grant No. DUT22LK11) and XingLiaoYingCai Project of Liaoning Province, China (Grant No. XLYC1907163). The calculations were performed on Tianjin Supercomputing Platform, Shanghai Supercomputing Platform.
Corresponding Authors:  Junfeng Gao     E-mail:  gaojf@dlut.edu.cn

Cite this article: 

Hongsheng Liu(柳洪盛), Yuanyuan Zhao(赵圆圆), Shi Qiu(邱实), Jijun Zhao(赵纪军), and Junfeng Gao(高峻峰) Reconstruction and stability of Fe3O4(001) surface: An investigation based on particle swarm optimization and machine learning 2023 Chin. Phys. B 32 056802

[1] Mitchell M J, Billingsley M M, Haley R M, Wechsler M E, Peppas N A and Langer R 2021 Nat. Rev. Drug Discov. 20 101
[2] Colombo M, Carregal-Romero S, Casula M F, Gutiérrez L, Morales M P, Böhm I B, Heverhagen J T, Prosperi D and Parak W J 2012 Chem. Soc. Rev. 41 4306
[3] Chee H L, Gan C R R, Ng M, Low L, Fernig D G, Bhakoo K K and Paramelle D 2018 ACS Nano 12 6480
[4] Sun S N, We C, Zhu Z Z, Hou Y L, Venkatraman Subbu S and Xu Z C 2014 Chin. Phys. B 23 037503
[5] Li W Y, Li W T, Li B Q, Dong L J, Meng T H, Huo G, Liang G Y and Lu X G 2021 Chin. Phys. B 30 104402
[6] Eerenstein W, Palstra T T M, Saxena S S and Hibma T 2002 Phys. Rev. Lett. 88 247204
[7] Huang Z, Liu W, Liang J, Guo Q, Zhai Y and Xu Y 2022 Chin. Phys. B 31 068505
[8] Zhu M and Wachs I E 2016 ACS Catal. 6 722
[9] Sharma R K, Dutta S, Sharma S, Zboril R, Varma R S and Gawande M B 2016 Green Chem. 18 3184
[10] Verwey E J W 1939 Nature 144 327
[11] Liu H and Di Valentin C 2017 J. Phys. Chem. C 121 25736
[12] Parkinson G S 2016 Surf. Sci. Rep. 71 272
[13] Gaines J M, Bloemen P J H, Kohlhepp J T, Bulle-Lieuwma C W T, Wolf R M, Reinders A, Jungblut R M, van der Heijden P A A, van Eemeren J T W M, de Stegge J A and de Jonge W J M 1997 Surf. Sci. 373 85
[14] Tarrach G, Bürgler D, Schaub T, Wiesendanger R and Güntherodt H J 1993 Surf. Sci. 285 1
[15] Chambers S A, Thevuthasan S and Joyce S A 2000 Surf. Sci. 450 L273
[16] Mijiritskii A V and Boerma D O 2001 Surf. Sci. 486 73
[17] Stanka B, Hebenstreit W, Diebold U and Chambers S A 2000 Surf. Sci. 448 49
[18] Voogt F C, Fujii T, Smulders P J M, Niesen L, James M A and Hibma T 1999 Phys. Rev. B 60 11193
[19] Pentcheva R, Wendler F, Meyerheim H L, Moritz W, Jedrecy N and Scheffler M 2005 Phys. Rev. Lett. 94 126101
[20] Bliem R, McDermott E, Ferstl P, Setvin M, Gamba O, Pavelec J, Schneider M A, Schmid M, Diebold U, Blaha P, Hammer L and Parkinson G S 2014 Science 346 1215
[21] Lodziana Z 2007 Phys. Rev. Lett. 99 206402
[22] Liu H and Di Valentin C 2018 Nanoscale 10 11021
[23] Novotny Z, Argentero G, Wang Z, Schmid M, Diebold U and Parkinson G S 2012 Phys. Rev. Lett. 108 216103
[24] Wang P, Xing J, Jiang X and Zhao J 2022 ACS Appl. Mater. Interfaces 14 33726
[25] Mao X, Wang L, Xu Y, Wang P, Li Y and Zhao J 2021 npj Comput. Mater. 7 46
[26] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001
[27] Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H-F, Yang G, Zhang L and Ma Y 2016 Phys. Rev. Lett. 116 057002
[28] Shao G F, Zhu M, Shangguan Y L, Li W R, Zhang C, Wang W W and Li L 2017 Chin. Phys. B 26 063601
[29] Sun Y and Hu W 2021 SmartMat 3 474
[30] Sun Z, Yin H, Liu K, Cheng S, Li G K, Kawi S, Zhao H, Jia G and Yin Z 2022 SmartMat 3 68
[31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Behler J 2011 J. Chem. Phys. 134 074106
[35] Artrith N, Urban A and Ceder G 2017 Phys. Rev. B 96 014112
[36] Reuter K and Scheffler M 2001 Phys. Rev. B 65 035406
[37] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[38] Sanville E, Kenny S D, Smith R and Henkelman G 2007 J. Comput. Chem. 28 899
[39] Jordan K, Cazacu A, Manai G, Ceballos S F, Murphy S and Shvets I V 2006 Phys. Rev. B 74 085416
[40] Liu H and Di Valentin C 2019 Phys. Rev. Lett. 123 186101
[41] Sun S and Zeng H 2002 J. Am. Chem. Soc. 124 8204
[42] Hou Y, Yu J and Gao S 2003 J. Mater. Chem. 13 1983
[43] Sun S, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X and Li G 2004 J. Am. Chem. Soc. 126 273
[44] Park J, An K, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hwang N M and Hyeon T 2004 Nat. Mater. 3 891
[45] Tian Y, Yu B, Li X and Li K 2011 J. Mater. Chem. 21 2476
[1] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[2] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[3] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[4] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[5] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[6] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[7] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[8] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[9] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[14] Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance
Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军). Chin. Phys. B, 2022, 31(11): 117304.
[15] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
No Suggested Reading articles found!