CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Discrete vortex bound states with a van Hove singularity in the vicinity of the Fermi level |
Delong Fang(方德龙)† and Yunkang Cui(崔云康) |
School of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China |
|
|
Abstract A theoretical study on discrete vortex bound states is carried out near a vortex core in the presence of a van Hove singularity (VHS) near the Fermi level by solving Bogoliubov-de Gennes (BdG) equations. When the VHS lies exactly at the Fermi level and also at the middle of the band, a zero-energy state and other higher-energy states whose energy ratios follow integer numbers emerge. These discrete vortex bound state peaks undergo a splitting behavior when the VHS or Fermi level moves away from the middle of the band. Such splitting behavior will eventually lead to a new arrangement of quantized vortex core states whose energy ratios follow half-odd-integer numbers.
|
Received: 13 September 2022
Revised: 09 November 2022
Accepted manuscript online: 29 November 2022
|
PACS:
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
74.25.Op
|
(Mixed states, critical fields, and surface sheaths)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804154), and the Scientific Research Foundation of NJIT (Grant Nos. YKJ201853 and CKJA201807). |
Corresponding Authors:
Delong Fang
E-mail: fangdel@njit.edu.cn
|
Cite this article:
Delong Fang(方德龙) and Yunkang Cui(崔云康) Discrete vortex bound states with a van Hove singularity in the vicinity of the Fermi level 2023 Chin. Phys. B 32 057401
|
[1] Caroli C, de Gennes P G and Matricon J 1964 Phys. Lett. 9 307 [2] Hayashi N, Isoshima T, Ichioka M and Machida K 1998 Phys. Rev. Lett. 80 2921 [3] Chen M Y, Chen X Y, Yang H, Du Z Y, Zhu X Y, Wang E Y and Wen H H 2018 Nat. Commun. 9 970 [4] Kong L Y, Zhu S Y, Papaj M, Chen H, Cao L, Isobe H, Xing Y Q, Liu W Y, Wang D F, Fan P, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Gao H J and Ding H 2019 Nat. Phys. 15 1181 [5] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811 [6] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X and Feng D L 2018 Phys. Rev. X 8 041056 [7] Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z X, Zhang T and Feng D L 2019 Chin. Phys. Lett. 36 057403 [8] Chen C, Liu Q, Bao W C, Yan Y J, Wang Q H, Zhang T and Feng D L 2020 Phys. Rev. Lett. 124 097001 [9] Liu W Y, Cao L, Zhu S Y, Kong L Y, Wang G W, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F Z, Kondo T, Du S X, Cao G H, Shin S, Fu L, Yin Z P, Gao H J and Ding H 2020 Nat. Commun. 11 5688 [10] Chen X Y, Duan W, Fan X W, Hong W S, Chen K L, Yang H, Li S L, Luo H Q and Wen H H 2021 Phys. Rev. Lett. 126 257002 [11] Fan X W, Chen X Y, Yang H and Wen H H 2021 Europhys. Lett. 136 46002 [12] Kim H, Nagai Y, Rózsa L, Schreyer D and Wiesendanger R 2021 Appl. Phys. Rev. 8 031417 [13] Wang Y, Hirschfeld P J and Vekhter I 2012 Phys. Rev. B 85 020506 [14] Fang D L 2022 Chin. Phys. B to be published [15] van Hove L 1953 Phys. Rev. 89 1189 [16] Furukawa N, Rice T M and Salmhofer M 1998 Phys. Rev. Lett. 81 3195 [17] Nandkishore R, Levitov L S and Chubukov A V 2012 Nat. Phys. 8 158 [18] Yao H and Yang F 2015 Phys. Rev. B 92 035132 [19] Meng Z Y, Yang F, Chen K S, Yao H and Kee H Y 2015 Phys. Rev. B 91 184509 [20] Sherkunov Y and Betouras J J 2018 Phys. Rev. B 98 205151 [21] Hu Y, Wu X X, Ortiz B R, Ju S L, Han X L, Ma J Z, Plumb N C, Radovic M, Thomale R, Wilson S D, Schnyder A P and Shi M 2022 Nat. Commun. 13 2220 [22] Li G H, Luican A, Lopes Dos Santos J M B, Castro Neto A H, Reina A, Kong J and Andrei E Y 2009 Nat. Phys. 6 109 [23] Fang D L, Shi X, Du Z Y, Richard P, Yang H, Wu X X, Zhang P, Qian T, Ding X X, Wang Z Y, Kim T K, Hoesch M, Wang A F, Chen X H, Hu J P, Ding H and Wen H H 2015 Phys. Rev. B 92 144513 [24] Kang M G, Fang S A, Kim J K, Ortiz B R, Ryu S H, Kim J, Yoo J, Sangiovanni G, Di Sante D, Park B G, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Wilson S D, Park J H and Comin R 2022 Nat. Phys. 18 301 [25] Udby L, Andersen B M and Hedegård P 2006 Phys. Rev. B 73 224510 [26] Wang D, Xu J, Xiang Y Y and Wang Q H 2010 Phys. Rev. B 82 184519 [27] Fang D L, Liu J S and Cui Y K 2021 Phys. C 591 1353963 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|