Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057401    DOI: 10.1088/1674-1056/aca6d6
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Discrete vortex bound states with a van Hove singularity in the vicinity of the Fermi level

Delong Fang(方德龙) and Yunkang Cui(崔云康)
School of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China
Abstract  A theoretical study on discrete vortex bound states is carried out near a vortex core in the presence of a van Hove singularity (VHS) near the Fermi level by solving Bogoliubov-de Gennes (BdG) equations. When the VHS lies exactly at the Fermi level and also at the middle of the band, a zero-energy state and other higher-energy states whose energy ratios follow integer numbers emerge. These discrete vortex bound state peaks undergo a splitting behavior when the VHS or Fermi level moves away from the middle of the band. Such splitting behavior will eventually lead to a new arrangement of quantized vortex core states whose energy ratios follow half-odd-integer numbers.
Keywords:  vortex bound states      van Hove singularity      Fermi level      density of states  
Received:  13 September 2022      Revised:  09 November 2022      Accepted manuscript online:  29 November 2022
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804154), and the Scientific Research Foundation of NJIT (Grant Nos. YKJ201853 and CKJA201807).
Corresponding Authors:  Delong Fang     E-mail:  fangdel@njit.edu.cn

Cite this article: 

Delong Fang(方德龙) and Yunkang Cui(崔云康) Discrete vortex bound states with a van Hove singularity in the vicinity of the Fermi level 2023 Chin. Phys. B 32 057401

[1] Caroli C, de Gennes P G and Matricon J 1964 Phys. Lett. 9 307
[2] Hayashi N, Isoshima T, Ichioka M and Machida K 1998 Phys. Rev. Lett. 80 2921
[3] Chen M Y, Chen X Y, Yang H, Du Z Y, Zhu X Y, Wang E Y and Wen H H 2018 Nat. Commun. 9 970
[4] Kong L Y, Zhu S Y, Papaj M, Chen H, Cao L, Isobe H, Xing Y Q, Liu W Y, Wang D F, Fan P, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Gao H J and Ding H 2019 Nat. Phys. 15 1181
[5] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811
[6] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X and Feng D L 2018 Phys. Rev. X 8 041056
[7] Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z X, Zhang T and Feng D L 2019 Chin. Phys. Lett. 36 057403
[8] Chen C, Liu Q, Bao W C, Yan Y J, Wang Q H, Zhang T and Feng D L 2020 Phys. Rev. Lett. 124 097001
[9] Liu W Y, Cao L, Zhu S Y, Kong L Y, Wang G W, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F Z, Kondo T, Du S X, Cao G H, Shin S, Fu L, Yin Z P, Gao H J and Ding H 2020 Nat. Commun. 11 5688
[10] Chen X Y, Duan W, Fan X W, Hong W S, Chen K L, Yang H, Li S L, Luo H Q and Wen H H 2021 Phys. Rev. Lett. 126 257002
[11] Fan X W, Chen X Y, Yang H and Wen H H 2021 Europhys. Lett. 136 46002
[12] Kim H, Nagai Y, Rózsa L, Schreyer D and Wiesendanger R 2021 Appl. Phys. Rev. 8 031417
[13] Wang Y, Hirschfeld P J and Vekhter I 2012 Phys. Rev. B 85 020506
[14] Fang D L 2022 Chin. Phys. B to be published
[15] van Hove L 1953 Phys. Rev. 89 1189
[16] Furukawa N, Rice T M and Salmhofer M 1998 Phys. Rev. Lett. 81 3195
[17] Nandkishore R, Levitov L S and Chubukov A V 2012 Nat. Phys. 8 158
[18] Yao H and Yang F 2015 Phys. Rev. B 92 035132
[19] Meng Z Y, Yang F, Chen K S, Yao H and Kee H Y 2015 Phys. Rev. B 91 184509
[20] Sherkunov Y and Betouras J J 2018 Phys. Rev. B 98 205151
[21] Hu Y, Wu X X, Ortiz B R, Ju S L, Han X L, Ma J Z, Plumb N C, Radovic M, Thomale R, Wilson S D, Schnyder A P and Shi M 2022 Nat. Commun. 13 2220
[22] Li G H, Luican A, Lopes Dos Santos J M B, Castro Neto A H, Reina A, Kong J and Andrei E Y 2009 Nat. Phys. 6 109
[23] Fang D L, Shi X, Du Z Y, Richard P, Yang H, Wu X X, Zhang P, Qian T, Ding X X, Wang Z Y, Kim T K, Hoesch M, Wang A F, Chen X H, Hu J P, Ding H and Wen H H 2015 Phys. Rev. B 92 144513
[24] Kang M G, Fang S A, Kim J K, Ortiz B R, Ryu S H, Kim J, Yoo J, Sangiovanni G, Di Sante D, Park B G, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Wilson S D, Park J H and Comin R 2022 Nat. Phys. 18 301
[25] Udby L, Andersen B M and Hedegård P 2006 Phys. Rev. B 73 224510
[26] Wang D, Xu J, Xiang Y Y and Wang Q H 2010 Phys. Rev. B 82 184519
[27] Fang D L, Liu J S and Cui Y K 2021 Phys. C 591 1353963
[1] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[2] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[3] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[4] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[5] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[6] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[7] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[8] Density wave and topological superconductivity in the magic-angle-twisted bilayer-graphene
Ming Zhang(张铭), Yu Zhang(张渝), Chen Lu(卢晨), Wei-Qiang Chen(陈伟强), and Fan Yang(杨帆). Chin. Phys. B, 2020, 29(12): 127102.
[9] Inducing opto-electronic and spintronic trends in bilayer h-BN through TMO3 clusters incorporation: Ab-initio study
Irfan Ahmed, Muhammad Rafique, Mukhtiar Ahmed Mahar, Abdul Sattar Larik, Mohsin Ali Tunio, Yong Shuai(帅永). Chin. Phys. B, 2019, 28(11): 116301.
[10] Electronic properties of defects in Weyl semimetal tantalum arsenide
Yan-Long Fu(付艳龙), Chang-Kai Li(李长楷), Zhao-Jun Zhang(张昭军), Hai-Bo Sang(桑海波), Wei Cheng(程伟), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(9): 097101.
[11] Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study
Yi-Jie Zhang(张轶杰), Zhi-Peng Yin(尹志鹏), Yan Su(苏艳), De-Jun Wang(王德君). Chin. Phys. B, 2018, 27(4): 047103.
[12] The electronic, optical, and thermodynamical properties of tetragonal, monoclinic, and orthorhombic M3N4 (M=Si, Ge, Sn): A first-principles study
Dong Chen(陈东), Ke Cheng(程科), Bei-Ying Qi(齐蓓影). Chin. Phys. B, 2017, 26(4): 046303.
[13] Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: First-principles calculations
M A Ali, M R Khatun, N Jahan, M M Hossain. Chin. Phys. B, 2017, 26(3): 033102.
[14] Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(2): 026502.
[15] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
No Suggested Reading articles found!