Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077501    DOI: 10.1088/1674-1056/add006
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

One-step synthesis of ThMn12-type Sm0.8Zr0.2Fe11SiBx (x =0-0.2) ribbon magnets via rapid solidification

Chi Zhang(张驰)1, Hui-Dong Qian(千辉东)2†, Wenyun Yang(杨文云)2, Jingzhi Han(韩景智)2, Xuegang Chen(陈学刚)1,3,‡, and Jinbo Yang(杨金波)2,4,5,6,§
1 Center of Free Electron Laser & High Magnetic Field, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
2 Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing 100871, China;
3 Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Anhui University, Hefei 230601, China;
4 State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China;
5 Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing 100871, China 6 Peking University Yangtze Delta Institute of Optoelectronics, Beijing 100871, China
Abstract  ThMn$_{12}$-type iron-rich rare-earth permanent magnetic materials have garnered significant attention due to their exceptional intrinsic magnetic properties. However, challenges such as the metastable nature of the ThMn$_{12}$-type phase, excessively small single-domain grain size, and complex fabrication processes have hindered the achievement of high phase purity, uniform microstructure, and desirable extrinsic performance. In this study, we directly synthesized ThMn$_{12}$-type Sm$_{0.8}$Zr$_{0.2}$Fe$_{11}$SiB$_{x}$ ($x = 0$-0.2) ribbon magnets via boron doping combined with a one-step rapid solidification method. This approach not only simplifies the fabrication process but also enhances phase stability and achieves a uniform microstructure with high ThMn$_{12}$-type phase purity. By optimizing the boron content and cooling rate, the resulting magnets exhibit a coercivity ($H_{\rm c}$) of 6222 Oe, a remanence ($M_{\rm r}$) of 80 emu/g, and a remanence ratio ($M_{\rm r}/M_{\rm s}$) of 0.71. This work demonstrates a streamlined approach to producing high-performance ThMn$_{12}$-type magnets and provides insights into their practical application potential.
Keywords:  ThMn$_{12}$-type      permanent magnet      rapid solidification      phase stabilization      microstructure  
Received:  13 January 2025      Revised:  08 April 2025      Accepted manuscript online:  24 April 2025
PACS:  75.50.Ww (Permanent magnets)  
  75.75.-c (Magnetic properties of nanostructures)  
  75.75.Cd (Fabrication of magnetic nanostructures)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFB3500300 and 2023YFB3507000) and the Scientific Research Foundation of the High Education Institutions for Distinguished Young Scholars in Anhui Province (Grant No. 2022AH020012). This work was also partially supported by the Innovation Project for Overseas Researcher in Anhui Province (Grant No. 2022LCX004) and the facilities at the Center of Free Electron Laser&High Magnetic Field (FEL&HMF) in Anhui University.
Corresponding Authors:  Hui-Dong Qian, Xuegang Chen, Jinbo Yang     E-mail:  qianhuidong@pku.edu.cn;xgchen@ahu.edu.cn;jbyang@pku.edu.cn

Cite this article: 

Chi Zhang(张驰), Hui-Dong Qian(千辉东), Wenyun Yang(杨文云), Jingzhi Han(韩景智), Xuegang Chen(陈学刚), and Jinbo Yang(杨金波) One-step synthesis of ThMn12-type Sm0.8Zr0.2Fe11SiBx (x =0-0.2) ribbon magnets via rapid solidification 2025 Chin. Phys. B 34 077501

[1] Chau K T, Chan C C and Liu C 2008 IEEE Trans. Ind. Electron. 55 2246
[2] Chinchilla M, Arnaltes S and Burgos J C 2006 IEEE Trans. Energy Convers. 21 130
[3] Pullar R C 2012 Prog. Mater. Sci. 57 1191
[4] Hadjipanayis G C, Gabay A M, Schönhöbel A M, Martín-Cid A, Barandiaran J M and Niarchos D 2020 Engineering 6 141
[5] Qian H, Wang F, Liang D, Lin Z, Han J and Yang J 2023 J. Chin. Soc. Rare Earths 41 439
[6] Herbst J F 1991 Rev. Mod. Phys. 63 819
[7] Coey J M D 2020 Engineering 6 119
[8] Yang Y X, Walton A, Sheridan R, Güth K, Gauss R, Gutfleisch O, Buchert M, Steenari B M, Van Gerven T, Jones P T and Binnemans K 2017 J. Sustain. Metall. 3 122
[9] Buschow K H J 1991 Rep. Prog. Phys. 54 1123
[10] Takahashi Y K, Sepehri-Amin H and Ohkubo T 2021 Sci. Technol. Adv. Mater. 22 449
[11] Bessais L 2022 Materials 15 201
[12] Hirayama Y, Takahashi Y K, Hirosawa S and Hono K 2017 Scr. Mater. 138 62
[13] Yang Y C, Zhang X D, Ge S L, Pan Q, Kong L S, Li H, Yang J L, Zhang B S, Ding Y F and Ye C T 1991 J. Appl. Phys. 70 6001
[14] Gabay A M and Hadjipanayis G C 2016 J. Alloys Compd. 657 133
[15] Gabay A M, Martín-Cid A, Barandiaran J M, Salazar D and Hadjipanayis G C 2016 AIP Adv. 6 056015
[16] Xiao Q F, Zhang Z D, Zhao T, Liu W, Sui Y C, Zhao X G and Geng D Y 1997 J. Appl. Phys. 82 6170
[17] Khazzan S, Bessais L, Van Tendeloo G and Mliki N 2014 J. Magn. Magn. Mater. 363 125
[18] Li X H, Lou L, SongWP, Huang GW, Hou F C, Zhang Q, Zhang H T, Xiao J W, Wen B and Zhang X Y 2017 Adv. Mater. 29 1606430
[19] Xu D S, Liu L, Yuan J H, Zhou B, Dong C H, Wang F Q, Ding Y, Sun Y L and Yan A R 2024 Chin. Phys. B 33 098103
[20] Ener S, Skokov K P, Palanisamy D, Devillers T, Fischbacher J, Eslava G G, Maccari F, Schäfer L, Diop L V B, Radulov I, Gault B, Hrkac G, Dempsey N M, Schrefl T, Raabe D and Gutfleisch O 2021 Acta Mater. 214 116968
[21] Hua Y X, Li X H, Li J X, Luo X, Li Y Q, Qin W Y, Zhang L Q, Xiao J W, Xia W X, Song P, Yue M, Zhang H T and Zhang X Y 2024 Science 385 634
[22] Schrefl T, Fidler J and Kronmüller H 1994 Phys. Rev. B 49 6100
[23] Hadjipanayis G C 1999 J. Magn. Magn. Mater. 200 373
[24] Lou L, Li Y Q, Li X H, Li H L, Li W, Hua Y X, Xia W X, Zhao Z H, Zhang H T, Yue M and Zhang X Y 2021 Adv. Mater. 33 2102800
[25] Schönhöbel A M, Madugundo R, Barandiaran J M, Hadjipanayis G C, Palanisamy D, Schwarz T, Gault B, Raabe D, Skokov K, Gutfleisch O, Fischbacher J and Schrefl T 2020 Acta Mater. 200 652
[26] Zhang H T and Zhang X Y 2022 Mater. Res. Lett. 10 1
[27] Li X H, Lou L, Li Y Q, Zhang G S, Hua Y X, LiW, Zhang H T, Yue M and Zhang X Y 2022 Nano Lett. 22 7644
[28] Zhang X Y, Hua Y X and Li X H 2025 Sci. China Phys. Mech. Astron. 68 247511
[29] Zhang H T, Zhang T and Zhang X Y 2023 Adv. Sci. 10 2300193
[30] Lou L, Li J X, Luo X, Zhang T, Li X Z, Zhu Q Y, Du Y, Bi Z W, Sun X H, Cheng Q W, Xiao Y T, Zhao S T, Wen B, Zhang X Y and Zhang H T 2025 Nat. Commun. 16 3094
[31] Zhang X F, Liu L B, Li Y Q, Zhang D T, Liu W Q and Yue M 2024 Chin. Phys. B 33 097503
[32] Wang C Z, Liu L, Sun Y L, Zhao J T, Zhou B, Tu S S,Wang G C, Ding Y and Yan A R 2023 Chin. Phys. B 32 020704
[33] Qian H D, Lim J T, Kim J W, Yang Y, Zhou T H, Jeon H K, Park J and Choi C J 2022 Metals 12 753
[34] Buschow K H J 1991 J. Magn. Magn. Mater. 100 79
[35] Tozman P, Sepehri-Amin H, Takahashi Y K, Hirosawa S and Hono K 2018 Acta Mater. 153 354
[36] Srinithi A K, Tang X, Sepehri-Amin H, Zhang J, Ohkubo T and Hono K 2023 Acta Mater. 256 119111
[37] Tang X, Li J, Srinithi A K, Sepehri-Amin H, Ohkubo T and Hono K 2021 Scr. Mater. 200 113925
[38] Yang J B, Mao W H, Yang Y C, Ge S L, Zhao Z J and Li F S 1998 J. Appl. Phys. 83 2700
[39] Lin Z, Han J Z, Liu S Q, Xing M Y, Yang Y B, Yang J B, Wang C S, Du H L and Yang Y C 2012 J. Magn. Magn. Mater. 324 196
[40] Fan S H,Wu B C, Qian H D, Xia Y H, Li H, Chen G X, Xu Q, YangW Y, Han J Z, Du H L, Yang J B and Yang Y C 2024 Mater. Today Phys. 41 101348
[41] Fan S H, Wang F G, Xia Y H, Wu B C, Qian H D, Lin Z C,Wang Y K, Du H L, Yang J B and Yang Y C 2023 Mater. Today Phys. 35 101119
[42] Zhou T H, Qian H D, Lim J T, Jeon H K, Choi C J, Cho Y R and Park J 2023 J. Alloys Compd. 966 171620
[43] Sepehri-Amin H, Tamazawa Y, Kambayashi M, Saito G, Takahashi Y K, Ogawa D, Ohkubo T, Hirosawa S, Doi M, Shima T and Hono K 2020 Acta Mater. 194 337
[44] Bolyachkin A, Sepehri-Amin H, Kambayashi M, Mori Y, Ohkubo T, Takahashi Y K, Shima T and Hono K 2022 Acta Mater. 227 117716
[45] Liu Z Y, Liu Z, Wu H C, Zhu C Q, Cheng W X, Cao S, Luo H B, Wu L, Chen R J, Xia W X, Feng H B and Yan A R 2023 Scr. Mater. 227 115281
[46] Gabay A M and Hadjipanayis G C 2021 J. Magn. Magn. Mater. 529 167867
[47] Zhang J S, Tang X, Bolyachkin A, Srinithi A K, Ohkubo T, Sepehri- Amin H and Hono K 2022 Acta Mater. 238 118228
[48] Qian H D, Lim J T, Kim J W, Yang Y, Cho K M, Park J and Choi C J 2021 Scr. Mater. 193 17
[1] Microstructure and microwave surface resistance of YBCO films deposited under different oxygen pressures
Zhi-Bo Sheng(盛智博), Fu-Cong Chen(陈赋聪), Pei-Yu Xiong(熊沛雨), Qi-Ru Yi(易栖如), Jie Yuan(袁洁), Yu Chen(陈雨), Yue-Liang Gu(顾月良), Kui Jin(金魁), Huan-Hua Wang(王焕华), Xiao-Long Li(李晓龙), and Chen Gao(高琛). Chin. Phys. B, 2025, 34(4): 046105.
[2] Microstructure and magnetic properties of FeCoZr(Mo)BGe nanocrystalline alloys
Wanqiu Yu(于万秋), Yanxiang Sun(孙筵翔), Lihua Liu(刘立华), and Pingli Zhang(张平丽). Chin. Phys. B, 2025, 34(1): 016102.
[3] Effect of antioxidants on the efficiency of jet milling and the powder characteristics of Sm2Co17 permanent magnets
Da-Shuai Xu(许大帅), Lei Liu(刘雷), Jian-Hui Yuan(袁建辉), Bo Zhou(周波), Chuang-Hui Dong(董创辉), Feng-Qing Wang(王凤青), Yong Ding(丁勇), Ying-Li Sun(孙颖莉), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2024, 33(9): 098103.
[4] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[5] Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
Xing-Feng Zhang(张兴凤), Li-Bin Liu(刘立斌), Yu-Qing Li(李玉卿), Dong-Tao Zhang(张东涛), Wei-Qiang Liu(刘卫强), and Ming Yue(岳明). Chin. Phys. B, 2024, 33(9): 097503.
[6] Correlation of microstructure and magnetic softness of Si-microalloying FeNiBCuSi nanocrystalline alloy revealed by nanoindentation
Benjun Wang(汪本军), Wenjun Liu(刘文君), Li Liu(刘莉), Yu Wang(王玉), Yu Hang(杭宇), Xinyu Wang(王新宇), Mengen Shi(施蒙恩), Hanchen Feng(冯汉臣), Long Hou(侯龙), Chenchen Yuan(袁晨晨), Zhong Li(李忠), and Weihuo Li(李维火). Chin. Phys. B, 2024, 33(12): 126101.
[7] Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺). Chin. Phys. B, 2024, 33(11): 118501.
[8] Effect of CeO2 doping on the coercivity of 2:17 type SmCo magnets
Xiao-Lei Gao(高晓磊), Zhuang Liu(刘壮), Guang-Qing Wang(王广庆), Chao-Qun Zhu(竺超群), Wen-Xin Cheng(程文鑫), Ming-Xiao Zhang(张明晓), Xin-Cai Liu(刘新才), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(9): 097504.
[9] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[10] Oxidation behavior of Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2C–MxC (M = Ti, Zr, Hf, Nb, Ta) composite ceramic at high temperature
Shuai Xu(徐帅), Tao Wang(王韬), Xingang Wang(王新刚), Lu Wu(吴璐),Zhongqiang Fang(方忠强), Fangfang Ge(葛芳芳), Xuan Meng(蒙萱),Qing Liao(廖庆), Jinchun Wei(魏金春), and Bingsheng Li(李炳生). Chin. Phys. B, 2023, 32(6): 068102.
[11] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[12] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[13] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[14] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[15] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
No Suggested Reading articles found!