| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
One-step synthesis of ThMn12-type Sm0.8Zr0.2Fe11SiBx (x =0-0.2) ribbon magnets via rapid solidification |
| Chi Zhang(张驰)1, Hui-Dong Qian(千辉东)2†, Wenyun Yang(杨文云)2, Jingzhi Han(韩景智)2, Xuegang Chen(陈学刚)1,3,‡, and Jinbo Yang(杨金波)2,4,5,6,§ |
1 Center of Free Electron Laser & High Magnetic Field, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 2 Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing 100871, China; 3 Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Anhui University, Hefei 230601, China; 4 State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China; 5 Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing 100871, China 6 Peking University Yangtze Delta Institute of Optoelectronics, Beijing 100871, China |
|
|
|
|
Abstract ThMn$_{12}$-type iron-rich rare-earth permanent magnetic materials have garnered significant attention due to their exceptional intrinsic magnetic properties. However, challenges such as the metastable nature of the ThMn$_{12}$-type phase, excessively small single-domain grain size, and complex fabrication processes have hindered the achievement of high phase purity, uniform microstructure, and desirable extrinsic performance. In this study, we directly synthesized ThMn$_{12}$-type Sm$_{0.8}$Zr$_{0.2}$Fe$_{11}$SiB$_{x}$ ($x = 0$-0.2) ribbon magnets via boron doping combined with a one-step rapid solidification method. This approach not only simplifies the fabrication process but also enhances phase stability and achieves a uniform microstructure with high ThMn$_{12}$-type phase purity. By optimizing the boron content and cooling rate, the resulting magnets exhibit a coercivity ($H_{\rm c}$) of 6222 Oe, a remanence ($M_{\rm r}$) of 80 emu/g, and a remanence ratio ($M_{\rm r}/M_{\rm s}$) of 0.71. This work demonstrates a streamlined approach to producing high-performance ThMn$_{12}$-type magnets and provides insights into their practical application potential.
|
Received: 13 January 2025
Revised: 08 April 2025
Accepted manuscript online: 24 April 2025
|
|
PACS:
|
75.50.Ww
|
(Permanent magnets)
|
| |
75.75.-c
|
(Magnetic properties of nanostructures)
|
| |
75.75.Cd
|
(Fabrication of magnetic nanostructures)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFB3500300 and 2023YFB3507000) and the Scientific Research Foundation of the High Education Institutions for Distinguished Young Scholars in Anhui Province (Grant No. 2022AH020012). This work was also partially supported by the Innovation Project for Overseas Researcher in Anhui Province (Grant No. 2022LCX004) and the facilities at the Center of Free Electron Laser&High Magnetic Field (FEL&HMF) in Anhui University. |
Corresponding Authors:
Hui-Dong Qian, Xuegang Chen, Jinbo Yang
E-mail: qianhuidong@pku.edu.cn;xgchen@ahu.edu.cn;jbyang@pku.edu.cn
|
Cite this article:
Chi Zhang(张驰), Hui-Dong Qian(千辉东), Wenyun Yang(杨文云), Jingzhi Han(韩景智), Xuegang Chen(陈学刚), and Jinbo Yang(杨金波) One-step synthesis of ThMn12-type Sm0.8Zr0.2Fe11SiBx (x =0-0.2) ribbon magnets via rapid solidification 2025 Chin. Phys. B 34 077501
|
[1] Chau K T, Chan C C and Liu C 2008 IEEE Trans. Ind. Electron. 55 2246 [2] Chinchilla M, Arnaltes S and Burgos J C 2006 IEEE Trans. Energy Convers. 21 130 [3] Pullar R C 2012 Prog. Mater. Sci. 57 1191 [4] Hadjipanayis G C, Gabay A M, Schönhöbel A M, Martín-Cid A, Barandiaran J M and Niarchos D 2020 Engineering 6 141 [5] Qian H, Wang F, Liang D, Lin Z, Han J and Yang J 2023 J. Chin. Soc. Rare Earths 41 439 [6] Herbst J F 1991 Rev. Mod. Phys. 63 819 [7] Coey J M D 2020 Engineering 6 119 [8] Yang Y X, Walton A, Sheridan R, Güth K, Gauss R, Gutfleisch O, Buchert M, Steenari B M, Van Gerven T, Jones P T and Binnemans K 2017 J. Sustain. Metall. 3 122 [9] Buschow K H J 1991 Rep. Prog. Phys. 54 1123 [10] Takahashi Y K, Sepehri-Amin H and Ohkubo T 2021 Sci. Technol. Adv. Mater. 22 449 [11] Bessais L 2022 Materials 15 201 [12] Hirayama Y, Takahashi Y K, Hirosawa S and Hono K 2017 Scr. Mater. 138 62 [13] Yang Y C, Zhang X D, Ge S L, Pan Q, Kong L S, Li H, Yang J L, Zhang B S, Ding Y F and Ye C T 1991 J. Appl. Phys. 70 6001 [14] Gabay A M and Hadjipanayis G C 2016 J. Alloys Compd. 657 133 [15] Gabay A M, Martín-Cid A, Barandiaran J M, Salazar D and Hadjipanayis G C 2016 AIP Adv. 6 056015 [16] Xiao Q F, Zhang Z D, Zhao T, Liu W, Sui Y C, Zhao X G and Geng D Y 1997 J. Appl. Phys. 82 6170 [17] Khazzan S, Bessais L, Van Tendeloo G and Mliki N 2014 J. Magn. Magn. Mater. 363 125 [18] Li X H, Lou L, SongWP, Huang GW, Hou F C, Zhang Q, Zhang H T, Xiao J W, Wen B and Zhang X Y 2017 Adv. Mater. 29 1606430 [19] Xu D S, Liu L, Yuan J H, Zhou B, Dong C H, Wang F Q, Ding Y, Sun Y L and Yan A R 2024 Chin. Phys. B 33 098103 [20] Ener S, Skokov K P, Palanisamy D, Devillers T, Fischbacher J, Eslava G G, Maccari F, Schäfer L, Diop L V B, Radulov I, Gault B, Hrkac G, Dempsey N M, Schrefl T, Raabe D and Gutfleisch O 2021 Acta Mater. 214 116968 [21] Hua Y X, Li X H, Li J X, Luo X, Li Y Q, Qin W Y, Zhang L Q, Xiao J W, Xia W X, Song P, Yue M, Zhang H T and Zhang X Y 2024 Science 385 634 [22] Schrefl T, Fidler J and Kronmüller H 1994 Phys. Rev. B 49 6100 [23] Hadjipanayis G C 1999 J. Magn. Magn. Mater. 200 373 [24] Lou L, Li Y Q, Li X H, Li H L, Li W, Hua Y X, Xia W X, Zhao Z H, Zhang H T, Yue M and Zhang X Y 2021 Adv. Mater. 33 2102800 [25] Schönhöbel A M, Madugundo R, Barandiaran J M, Hadjipanayis G C, Palanisamy D, Schwarz T, Gault B, Raabe D, Skokov K, Gutfleisch O, Fischbacher J and Schrefl T 2020 Acta Mater. 200 652 [26] Zhang H T and Zhang X Y 2022 Mater. Res. Lett. 10 1 [27] Li X H, Lou L, Li Y Q, Zhang G S, Hua Y X, LiW, Zhang H T, Yue M and Zhang X Y 2022 Nano Lett. 22 7644 [28] Zhang X Y, Hua Y X and Li X H 2025 Sci. China Phys. Mech. Astron. 68 247511 [29] Zhang H T, Zhang T and Zhang X Y 2023 Adv. Sci. 10 2300193 [30] Lou L, Li J X, Luo X, Zhang T, Li X Z, Zhu Q Y, Du Y, Bi Z W, Sun X H, Cheng Q W, Xiao Y T, Zhao S T, Wen B, Zhang X Y and Zhang H T 2025 Nat. Commun. 16 3094 [31] Zhang X F, Liu L B, Li Y Q, Zhang D T, Liu W Q and Yue M 2024 Chin. Phys. B 33 097503 [32] Wang C Z, Liu L, Sun Y L, Zhao J T, Zhou B, Tu S S,Wang G C, Ding Y and Yan A R 2023 Chin. Phys. B 32 020704 [33] Qian H D, Lim J T, Kim J W, Yang Y, Zhou T H, Jeon H K, Park J and Choi C J 2022 Metals 12 753 [34] Buschow K H J 1991 J. Magn. Magn. Mater. 100 79 [35] Tozman P, Sepehri-Amin H, Takahashi Y K, Hirosawa S and Hono K 2018 Acta Mater. 153 354 [36] Srinithi A K, Tang X, Sepehri-Amin H, Zhang J, Ohkubo T and Hono K 2023 Acta Mater. 256 119111 [37] Tang X, Li J, Srinithi A K, Sepehri-Amin H, Ohkubo T and Hono K 2021 Scr. Mater. 200 113925 [38] Yang J B, Mao W H, Yang Y C, Ge S L, Zhao Z J and Li F S 1998 J. Appl. Phys. 83 2700 [39] Lin Z, Han J Z, Liu S Q, Xing M Y, Yang Y B, Yang J B, Wang C S, Du H L and Yang Y C 2012 J. Magn. Magn. Mater. 324 196 [40] Fan S H,Wu B C, Qian H D, Xia Y H, Li H, Chen G X, Xu Q, YangW Y, Han J Z, Du H L, Yang J B and Yang Y C 2024 Mater. Today Phys. 41 101348 [41] Fan S H, Wang F G, Xia Y H, Wu B C, Qian H D, Lin Z C,Wang Y K, Du H L, Yang J B and Yang Y C 2023 Mater. Today Phys. 35 101119 [42] Zhou T H, Qian H D, Lim J T, Jeon H K, Choi C J, Cho Y R and Park J 2023 J. Alloys Compd. 966 171620 [43] Sepehri-Amin H, Tamazawa Y, Kambayashi M, Saito G, Takahashi Y K, Ogawa D, Ohkubo T, Hirosawa S, Doi M, Shima T and Hono K 2020 Acta Mater. 194 337 [44] Bolyachkin A, Sepehri-Amin H, Kambayashi M, Mori Y, Ohkubo T, Takahashi Y K, Shima T and Hono K 2022 Acta Mater. 227 117716 [45] Liu Z Y, Liu Z, Wu H C, Zhu C Q, Cheng W X, Cao S, Luo H B, Wu L, Chen R J, Xia W X, Feng H B and Yan A R 2023 Scr. Mater. 227 115281 [46] Gabay A M and Hadjipanayis G C 2021 J. Magn. Magn. Mater. 529 167867 [47] Zhang J S, Tang X, Bolyachkin A, Srinithi A K, Ohkubo T, Sepehri- Amin H and Hono K 2022 Acta Mater. 238 118228 [48] Qian H D, Lim J T, Kim J W, Yang Y, Cho K M, Park J and Choi C J 2021 Scr. Mater. 193 17 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|