Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 016102    DOI: 10.1088/1674-1056/ad5a77
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Microstructure and magnetic properties of FeCoZr(Mo)BGe nanocrystalline alloys

Wanqiu Yu(于万秋)1,†, Yanxiang Sun(孙筵翔)2, Lihua Liu(刘立华)1, and Pingli Zhang(张平丽)1
1 College of Physics, Jilin Normal University, Siping 136000, China;
2 Chengxi Power Supply Company, State Grid Tianjin Electric Power Company, Tianjin 300190, China
Abstract  The microstructure and magnetic properties of Fe$_{40}$Co$_{40}$Zr$_{9}$B$_{10}$Ge$_{1}$ (Mo-free) and Fe$_{40}$Co$_{40}$Zr$_{5}$Mo$_{4}$B$_{10}$Ge$_{1}$ (Mo-containing) nanocrystalline alloys, prepared using an amorphous crystallization method, were investigated. Mo addition affects the crystallization of the Fe$_{40}$Co$_{40}$Zr$_{9}$B$_{10}$Ge$_{1}$ amorphous alloy and decreases the grain size of the $\alpha $-Fe(Co) phase below 650 $^\circ$C. For the Mo-free alloy annealed at 600 $^\circ$C and the Mo-containing alloy annealed at 575 $^\circ$C, with a single $\alpha $-Fe(Co) crystallization phase and approximately similar crystallization volume fractions, the Mo-containing alloy showed smaller, more regularly shaped grains and a significantly narrower grain-size distribution than the Mo-free alloy. The Fe and Co contents in the nanograins of the two alloys also differed. For the Mo-free alloy, a higher concentration of Co distributed in the residual amorphous matrix. For the Mo-containing alloy, a higher concentration Co dissolved in the nanograins. The specific saturation magnetization and coercivity of the Mo-free alloy were 1.05- and 1.59-times higher than those of the Mo-containing alloy, respectively.
Keywords:  nanostructured materials      Mo addition      microstructure      grain size  
Received:  23 April 2024      Revised:  13 June 2024      Accepted manuscript online:  21 June 2024
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  61.46.Hk (Nanocrystals)  
  75.75.-c (Magnetic properties of nanostructures)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the Natural Science Foundation of Jilin Province, China (Grant No. YDZJ202201ZYTS319) and the Fund from Sinoma Institute of Materials Research (Guangzhou) Co., Ltd. (SIMR) for assisting with the TEM characterization.
Corresponding Authors:  Wanqiu Yu     E-mail:  yuwanqiu2004@126.com

Cite this article: 

Wanqiu Yu(于万秋), Yanxiang Sun(孙筵翔), Lihua Liu(刘立华), and Pingli Zhang(张平丽) Microstructure and magnetic properties of FeCoZr(Mo)BGe nanocrystalline alloys 2025 Chin. Phys. B 34 016102

[1] Jafari S, Beitollahi A, Eftekhari Yekta B, Ohkubo T, Budinsky V, Marsilius M, Mollazadeh S, Herzer G and Hono K 2016 J. Magn. Magn. Mater. 401 1123
[2] Willard M A, Laughlin D E, Mchenry M E, Thoma D, Sickafus K, Cross J O and Harris V G 1998 J. Appl. Phys. 84 6773
[3] Yu W Q, Zeng H Q, Sun Y M, Sun Y J and Hua Z 2017 Phys. Lett. A 381 1573
[4] Yu W Q, Sun Y M and Hua Z 2011 Appl. Surf. Sci. 257 9733
[5] Yu W Q, Lu L P, Zuo B, Hua Z, Xing G L, Wang X Y and Wang D D 2019 Appl. Phys. A 125 636
[6] Yu W Q, Zeng H Q, Sun Y M and Hua Z 2017 Vacuum 137 175
[7] Yu W Q, Tian B, Wang Z Q, Liu Y D and Sun Y M 2022 Rare Met. Mater. Eng. 51 1735
[8] YuWQ, Sun Y M, Liu Y D, Liu J, Zuo B, Liu L H, Dong L R and Hua Z 2012 Optoelectron. Adv. Mater. Rapid Commun. 6 145
[9] Lian L Y, Zhang X W, Liu Y, Li J and Wang R Q 2023 Chin. Phys. B 32 077501
[10] Hao Q Q, Wang Z, Li X H, Zhang Y and Shi R M 2021 Physica B 604 412701
[11] Zhang L, Wang Z and Xu Y C 2018 J. Non-Cryst. Solids 481 148
[12] Sun Y and Bi X 2011 J. Alloys Compd. 509 1665
[13] Blázquez J S, Franco V, Conde A and Kiss L F 2003 J. Magn. Magn. Mater. 262 170
[14] Li Y, Wang Z and Zhang W 2018 AIP Adv. 8 056115
[15] Nabiałek M, Je·z B and Błoch K 2020 Metall. Mater. Trans. A 51 4602
[16] Kucuk I, Aykol M, Uzun O, Yildirim M, Kabaer M, Duman N, Yilmaz F, Erturk K, Akdeniz M V and Mekhrabov A O 2011 J. Alloys Compd. 509 2334
[17] Alleg S, Souilah S, Younes A, Bensalem R, Suñol J J and Greneche J M 2012 J. Alloys Compd. 536 S394
[18] Li X H, Wang Z and Duan H J 2019 J. Non-Cryst. Solids 517 114
[19] Lashgari H R, Chu D, Xie S, Sun H, Ferry M and Li S 2014 J. Non- Cryst. Solids 391 61
[20] Akase Z, Kimura K, Saito T, Niitsu K, Tanigaki T, Iwasaki Y, Sharma P, Makino A and Shindo D 2022 J. Magn. Magn. Mater. 541 168519
[21] Xu J, Liu X, Wang G, Luo T, Wang J, Lu K and Yang Y 2021 J. Alloys Compd. 859 157850
[22] Hono K, Ping D H, Ohnuma M and Onodera H 1999 Acta Mater. 47 997
[23] Ohkubo T, Kai H, Ping D H, Hono K and Hirotsu Y 2001 Scr. Mater. 44 971
[24] Jha R, Diercks D R, Chakraborti N, Stebner A P and Ciobanu C V 2019 Scr. Mater. 162 331
[25] Ping D H,Wu Y Q, Hono K,Willard M A, Mchenry M E and Laughlin D E 2001 Scr. Mater. 45 781
[26] Sun Y M,Wang Z Q, Xu S C and Hua Z 2021 Chin. Phys. B 30 038103
[27] Lyasotsky I V, Dyakonova N B and Dyakonov D L 2014 J. Alloys Compd. 586 S20
[28] Dyakonova N B, Dyakonov D L and Lyasotskyi I V 2014 J. Alloys Compd. 586 S41
[29] Pradeep K G, Herzer G, Choi P and Raabe D 2014 Acta Mater. 68 295
[30] Bitoh T, Makino A, Inoue A and Masumoto T 2003 Mater. Trans. 44 2011
[31] Prabhu D, Veerababu R, Balamuralikrishnan R, Narayanasamy A and Chattopadhyay K 2012 Mater. Sci. Eng. B 177 791
[32] Xue L, Yang W M, Liu H S, Men H, Wang A D, Chang C T and Shen B L 2016 J. Magn. Magn. Mater. 419 198
[33] Miao B, Luo Q, Chang C, Liu T, Zhang Y and Shen J 2019 J. Magn. Magn. Mater. 477 156
[34] Roy R K, Panda A K and Mitra A 2016 J. Magn. Magn. Mater. 418 236
[35] Hou L, Fan X, Wang Q, Yang W and Shen B 2019 J. Mater. Sci. Technol. 35 1655
[36] Hawelek L, Polak M, Wlodarczyk P, Zackiewicz P, Radon A, Lukowiec D, Hreczka M and Kolano-Burian A 2020 J. Magn. Magn. Mater. 512 166681
[37] Kunca B, Marcin J, Svec P sr and Skorvánek I 2024 J. Magn. Magn. Mater. 591 171679
[38] Takeuchi A and Inoue A 2005 Mater. Trans. 46 2817
[39] Slater J C 1937 J. Appl. Phys. 8 385
[40] Pauling L 1938 Phys. Rev. 54 899
[41] Müller M, Grahl H, Mattern N, Ktihn U and Schnell B 1996 J. Magn. Magn. Mater. 160 284
[42] Blázquez J S, Franco V and Conde A 2002 J. Phys.: Condens. Matter 14 11717
[43] Herzer G 1989 IEEE Trans. Magn. 25 3327
[44] Herzer G 2013 Acta Mater. 61 718
[1] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[2] Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
Xing-Feng Zhang(张兴凤), Li-Bin Liu(刘立斌), Yu-Qing Li(李玉卿), Dong-Tao Zhang(张东涛), Wei-Qiang Liu(刘卫强), and Ming Yue(岳明). Chin. Phys. B, 2024, 33(9): 097503.
[3] Quantitative analysis of laser-generated ultrasonic wave characteristics and their correlation with grain size in polycrystalline materials
Zhaowen Xu(徐兆文), Xue Bai(白雪), Jian Ma(马健), Zhuangzhuang Wan(万壮壮), and Chaoqun Wang(王超群). Chin. Phys. B, 2024, 33(8): 087801.
[4] Correlation of microstructure and magnetic softness of Si-microalloying FeNiBCuSi nanocrystalline alloy revealed by nanoindentation
Benjun Wang(汪本军), Wenjun Liu(刘文君), Li Liu(刘莉), Yu Wang(王玉), Yu Hang(杭宇), Xinyu Wang(王新宇), Mengen Shi(施蒙恩), Hanchen Feng(冯汉臣), Long Hou(侯龙), Chenchen Yuan(袁晨晨), Zhong Li(李忠), and Weihuo Li(李维火). Chin. Phys. B, 2024, 33(12): 126101.
[5] Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺). Chin. Phys. B, 2024, 33(11): 118501.
[6] Effect of grain size on gas bubble evolution in nuclear fuel: Phase-field investigations
Dan Sun(孙丹), Qingfeng Yang(杨青峰), Jiajun Zhao(赵家珺), Shixin Gao(高士鑫), Yong Xin(辛勇), Yi Zhou(周毅), Chunyu Yin(尹春雨), Ping Chen(陈平), Jijun Zhao(赵纪军), and Yuanyuan Wang(王园园). Chin. Phys. B, 2024, 33(1): 016105.
[7] Effect of CeO2 doping on the coercivity of 2:17 type SmCo magnets
Xiao-Lei Gao(高晓磊), Zhuang Liu(刘壮), Guang-Qing Wang(王广庆), Chao-Qun Zhu(竺超群), Wen-Xin Cheng(程文鑫), Ming-Xiao Zhang(张明晓), Xin-Cai Liu(刘新才), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(9): 097504.
[8] Oxidation behavior of Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2C–MxC (M = Ti, Zr, Hf, Nb, Ta) composite ceramic at high temperature
Shuai Xu(徐帅), Tao Wang(王韬), Xingang Wang(王新刚), Lu Wu(吴璐),Zhongqiang Fang(方忠强), Fangfang Ge(葛芳芳), Xuan Meng(蒙萱),Qing Liao(廖庆), Jinchun Wei(魏金春), and Bingsheng Li(李炳生). Chin. Phys. B, 2023, 32(6): 068102.
[9] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[10] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[11] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[12] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[13] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[14] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[15] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
No Suggested Reading articles found!