Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097503    DOI: 10.1088/1674-1056/ad58c4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method

Xing-Feng Zhang(张兴凤), Li-Bin Liu(刘立斌), Yu-Qing Li(李玉卿)†, Dong-Tao Zhang(张东涛), Wei-Qiang Liu(刘卫强), and Ming Yue(岳明)‡
College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China
Abstract  The Sm-Zr-Fe-Co-Ti quinary-alloys with ThMn$_{12}$ structure has attracted wide attention for ultra-high intrinsic magnetic properties, showing potentiality to be developed into rare-earth permanent magnets. The Ti element in alloys is crucial for phase stability and magnetic properties, and lower Ti content can increase intrinsic magnetic properties but reduce phase stability. In this study, the 1:12 single-phase melt-spun ribbons with low Ti content was successfully prepared using a rapid solidification non-equilibrium method for the Sm$_{1.1}$Zr$_{0.2}$Fe$_{9.2}$Co$_{2.3}$Ti$_{0.5}$ quinary-alloy. However, this non-equilibrium ribbon did not achieve good magnetic hardening due to the uneven microstructure and microstrain. Then, annealing was carried out to eliminate micro-strain and homogenize microstructure, therefore, remanence and coercivity were significantly improved even the precipitation of a small amount of $\alpha $-Fe phase which were not conducive to coercivity. The remanence of 86.1 emu/g and coercivity of 151 kA/m was achieved when annealing at 850 ${^\circ}$C for 45 min. After hot pressing, under the action of high temperature and pressure, a small portion of ThMn$_{12}$ phases in the magnet decompose into Sm-rich phases and $\alpha $-Fe, while remanence of 4.02 kGs (1 Gs = 10$^{-4}$ T), and coercivity of 1.12 kOe (1 Oe = 79.5775 A$\cdot$m$^{-1}$) were still acquired. Our findings can provide reference for exploring practical permanent magnets made of 1:12 type quinary-alloys.
Keywords:  magnetic materials      (Sm,Zr)(Fe,Co,Ti)$_{12}$ magnets      nanocrystalline magnet      microstructure  
Received:  01 March 2024      Revised:  30 May 2024      Accepted manuscript online:  17 June 2024
PACS:  75.50.Ww (Permanent magnets)  
  75.75.-c (Magnetic properties of nanostructures)  
  75.75.Cd (Fabrication of magnetic nanostructures)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3500300), the National Natural Science Foundation of China (Grant No. 51931007), and the Program of Top Disciplines Construction in Beijing (Grant No. PXM2019 014204 500031).
Corresponding Authors:  Yu-Qing Li, Ming Yue     E-mail:  yqli@bjut.edu.cn;yueming@bjut.edu.cn

Cite this article: 

Xing-Feng Zhang(张兴凤), Li-Bin Liu(刘立斌), Yu-Qing Li(李玉卿), Dong-Tao Zhang(张东涛), Wei-Qiang Liu(刘卫强), and Ming Yue(岳明) Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method 2024 Chin. Phys. B 33 097503

[1] Narasimhan K S V L 1981 J. Appl. Phys. 52 2512
[2] Matsuura Y 2006 J. Magn. Magn. Mater. 303 344
[3] Zhang X Y 2020 Mater. Res. Lett. 8 49
[4] Li X H, Lou L and Song W P 2017 Adv. Mater. 29 1606430
[5] Li X H, Lou L and Song W P 2017 Nano Lett. 17 2985
[6] Li H L, Li X H and Guo D F 2016 Nano Lett. 16 5631
[7] Teng Y, Li Y Q and Xu X C 2023 J. Mater. Sci. Technol. 138 193
[8] Liu Y G, Xu L and Guo D F 2009 J. Appl. Phys. 106 113918
[9] Poudel B, Amiri E and Rastgoufard P 2021 IEEE Trans. Magn. 57 1
[10] Yang Y C, Kebe B and James W J 1981 J. Appl. Phys. 52 2077
[11] Ohashi K, Tawara Y and Osugi R 1988 J. Appl. Phys. 64 5714
[12] Gabay A M and Hadjipanayis G C 2017 J. Magn. Magn. Mater. 422 43
[13] Tozman P, Sepehri-Amin H and Abe T 2023 Acta Mater. 258 119197
[14] Matsumoto M, Hawai T and Ono K 2020 Phys. Rev. Appl. 13 064028
[15] Chai W X, Huang Y L and Li H F 2024 J. Mater. Res. Technol. 29 4676
[16] Ryzhikhin I, Andreev S and Semkin M 2019 J. Phys. Conf. Ser. 1389 012117
[17] Kobayashi K, Suzuki S and Kuno T 2017 J. Alloys Compd. 694 914
[18] Tozman P, Sepehri-Amin H and Takahashi Y K 2018 Acta Mater. 153 354
[19] Yang Y C, Kong L S and Zha Y B 1988 Le Journal de Physique Colloques 49 543
[20] Hu B P, Li H S and Gavigan J P 1989 J. Phys.: Condens. Matter 1 755
[21] Tozman P, Sepehri-Amin H and Ohkubo T 2021 J. Alloys Compd. 855 157491
[22] Hagiwara M, Sanada N and Sakurada S 2018 J. Magn. Magn. Mater. 465 554
[23] Rong C B and Shen B G 2018 Chin. Phys. B 27 117502
[24] Dirba I, Harashima Y and Sepehri-Amin H 2020 J. Alloys Compd. 813 152224
[25] Zhang J S, Tang X and Sepehri-Amin H 2021 Acta Mater. 217 117161
[26] Kuno T, Suzuki S and Urushibata K 2019 Mater. Trans. 60 1697
[27] Zhao L Z, Li C L and Zhang X F 2020 J. Alloys Compd. 828 154428
[28] Li Y C, Yu N J and Wu Q 2022 J. Magn. Magn. Mater. 549 169065
[29] Neznakhin D S, Andreev S V and Semkin M A 2019 J. Magn. Magn. Mater. 484 212
[30] Popov A G, Protasov A V and Gaviko V S 2019 J. Rare Earths 37 1066
[31] Hÿtch M J, Snoeck E and Kilaas R 1998 Ultramicroscopy 74 131
[1] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[2] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[3] Magnetic and magnetocaloric effect of Er20Ho20Dy20Cu20Ni20 high-entropy metallic glass
Shi-Lin Yu(于世霖), Lu Tian(田路), Jun-Feng Wang(王俊峰), Xin-Guo Zhao(赵新国), Da Li(李达), Zhao-Jun Mo(莫兆军), and Bing Li(李昺). Chin. Phys. B, 2024, 33(5): 057502.
[4] Effect of CeO2 doping on the coercivity of 2:17 type SmCo magnets
Xiao-Lei Gao(高晓磊), Zhuang Liu(刘壮), Guang-Qing Wang(王广庆), Chao-Qun Zhu(竺超群), Wen-Xin Cheng(程文鑫), Ming-Xiao Zhang(张明晓), Xin-Cai Liu(刘新才), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(9): 097504.
[5] Oxidation behavior of Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2C–MxC (M = Ti, Zr, Hf, Nb, Ta) composite ceramic at high temperature
Shuai Xu(徐帅), Tao Wang(王韬), Xingang Wang(王新刚), Lu Wu(吴璐),Zhongqiang Fang(方忠强), Fangfang Ge(葛芳芳), Xuan Meng(蒙萱),Qing Liao(廖庆), Jinchun Wei(魏金春), and Bingsheng Li(李炳生). Chin. Phys. B, 2023, 32(6): 068102.
[6] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[7] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[8] Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds
Zhihong Hao(郝志红), Hui Liu(刘辉), and Juguo Zhang(张聚国). Chin. Phys. B, 2023, 32(11): 117501.
[9] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[10] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[11] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[12] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[13] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[14] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[15] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
No Suggested Reading articles found!