CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of CeO2 doping on the coercivity of 2:17 type SmCo magnets |
Xiao-Lei Gao(高晓磊)1,2, Zhuang Liu(刘壮)2,†, Guang-Qing Wang(王广庆)2, Chao-Qun Zhu(竺超群)1,2, Wen-Xin Cheng(程文鑫)2, Ming-Xiao Zhang(张明晓)2, Xin-Cai Liu(刘新才)1,‡, Ren-Jie Chen(陈仁杰)2, and A-Ru Yan(闫阿儒)2 |
1 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; 2 CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
|
|
Abstract The effects of CeO2 doping on the magnetic properties and microstructure of 2:17 type SmCo magnets are studied. With the increase of CeO2 from 0 wt.% to 3 wt.%, the coercivity of the magnets increases from 22.22 kOe to over 29.37 kOe, which is an increase of more than 30%. When the doping content is lower than 1 wt.%, the remanence and magnetic energy product of the magnets remain almost constant. Both decrease sharply as the doping concentration further increases. After CeO2 doping, the oxide content in the magnet increases significantly and the Ce element is uniformly distributed in the magnet. Observing the magnetic domains reveals that doping with CeO2 can refine the magnetic domains and make the magnetic domain wall more stable, resulting in a significant increase in the coercivity of the magnets.
|
Received: 19 July 2022
Revised: 16 November 2022
Accepted manuscript online: 09 December 2022
|
PACS:
|
75.50.Ww
|
(Permanent magnets)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2021YFB3503102), the Zhejiang Provincial Key R&D Program of China (Grant No. 2021C01191), and the Science and Technology Innovation 2025 Major Project of Ningbo (Grant No. 2020Z037). |
Corresponding Authors:
Zhuang Liu, Xin-Cai Liu
E-mail: zliu@nimte.ac.cn;liuxincai@nbu.edu.cn
|
Cite this article:
Xiao-Lei Gao(高晓磊), Zhuang Liu(刘壮), Guang-Qing Wang(王广庆), Chao-Qun Zhu(竺超群), Wen-Xin Cheng(程文鑫), Ming-Xiao Zhang(张明晓), Xin-Cai Liu(刘新才), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒) Effect of CeO2 doping on the coercivity of 2:17 type SmCo magnets 2023 Chin. Phys. B 32 097504
|
[1] Jiang C, Venkatesan M, Gallagher K and Coey 2001 J. Magn. Magn. Mater. 236 49 [2] Zhang C Y, Liu Z, Wang G Q, Yan G H, Chen R J, Lee D and Yan A R 2019 J. Alloys Compd. 795 513 [3] Yang Q Q, Liu Z, Zhang C Y, Wu H C, Gao X L, Ma Y L, Chen R J and Yan A R 2021 Chin. Phys. B 30 551 [4] Gutfleisch O, Willard M A, Ekkes Brück, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821 [5] Goll D, Stadelmaier H H and Kronmüller H 2010 Scr. Mater. 63 243 [6] Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T and Schultz L 2006 Acta Mater. 54 997 [7] Kronmüller H and Goll D 2002 Scr. Mater. 47 545 [8] Sepehri-Amin H, Thielsch J, Fischbacher J, Ohkubo T, Schrefl T, Gutfleisch O and Hono K 2017 Acta Mater. 126 1 [9] Xiong X Y and Finlayson T 2008 J. Appl. Phys. 104 103910 [10] Duerrschnabel M, Yi M, Uestuener K, Liesegang M, Katter M, Kleebe H J and Molina-Luna L 2017 Nat. Commun. 8 1 [11] Xue Z Q, Liu L, Liu Z, Li M, Lee D, Chen R J, Guo Y Q and Yan A R 2016 Scr. Mater. 113 226 [12] Hadjipanayis G C, Tang W, Zhang Y, Chui S T, Liu J F, Chen C and Kronmüller H 2000 IEEE Trans. Magn. 36 3382 [13] Liu S, Yang J, Doyle G, Potts G and Kuhl G E 2000 J. Appl. Phys 87 6728 [14] Goll D, Stadelmaier H H and Kronmüller H 2010 Scr. Mater. 63 243 [15] Kronmüller H and Goll D 2006 J. Iron Steel Res. Int. 13 39 [16] Kronmüller H and Goll D 2008 Phys. B 403 237 [17] Goll D, Kleinschroth I, Sigle W and Kronmüller H 2000 Appl. Phys. Lett. 76 1054 [18] Liu J F, Chui T, Dimitrov D and Hadjipanayis G C 1998 Appl. Phys. Lett. 73 3007 [19] Gopalan R, Hono K, Yan A and Gutfleisch O 2009 Scr. Mater. 60 764 [20] Yan A, Bollero A, Müller K H and Gutfleisch O 2002 Appl. Phys. Lett. 80 1243 [21] Horiuchi Y, Hagiwara M, Okamoto K, Kobayashi T, Endo M, Kobayashi T, Sanada N and Sakurada S 2014 Mater.Trans. 55 482 [22] Horiuchi Y, Hagiwara M, Okamoto K, Kobayashi T, Endo M, Kobayashi T, Nakamura T and Sakurada S 2013 IEEE Trans. Magn. 49 3221 [23] Wang Y Q, Yue M, Wu D, Zhang D T, Liu W Q, Zhang H G and Du Y H 2018 J. Alloys Compd. 741 495 [24] Wang Y Q, Yue M, Wu D, Zhang D T, Liu W Q and Zhang 2018 Scr. Mater. 146 231 [25] Yan G H, Liu Z, Xia W X, Zhang C Y, Wang G Q, Chen R J, Lee D, Liu P and Yan A R 2019 J. Alloys Compd. 785 429 [26] Horiuchi Y, Hagiwara M, Endo M, Sanada N and Sakurada S 2015 J. Appl. Phys. 117 1 [27] Wang G Q, Liu Z, Zhang C Y, Yang Q Q, Wu H C, Chen R J and Yan A R 2020 J. Alloys Compd. 849 156589 [28] Senno H and Tawara Y 1974 IEEE Trans. Magn. 10 313 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|