Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 074211    DOI: 10.1088/1674-1056/adcb9c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effective working regions of the grating chip for planar-integrated magneto-optics trap

Chang-Jiang Huang(黄长江)1,2,†, Ling-Xiao Wang(王凌潇)1,2,†, Liang Chen(陈梁)1,2, Chuan-Feng Li(李传锋)1,2,3, Guang-Can Guo(郭光灿)1,2,3, Chang-Ling Zou(邹长铃)1,2,3,‡, and Guo-Yong Xiang(项国勇)1,2,3,§
1 Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract  We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap (MOT). By scanning a blocking point in the incident laser beam, we identify four effective working regions of the laser beam contributing to MOT: a central region corresponding to the downward incident beam and three regions associated with the upward diffracted beams. The latter three regions are the effective regions of the grating chip. It is demonstrated that only three 3.5 mm radius grating regions can produce a MOT that is capable of trapping $10^5$ atoms with a temperature below 150 μK, retaining over 60% of atoms compared to a complete grating chip. This finding suggests that more than 60% of the grating chip area can be saved for other on-chip components, such as metasurfaces and nanophotonic devices, without significantly compromising MOT performance, paving the way for more compact and versatile atom-photon interfaces.
Keywords:  cold atoms      grating chip      magneto-optical trap (MOT)  
Received:  04 March 2025      Revised:  10 April 2025      Accepted manuscript online:  11 April 2025
PACS:  42.79.Dj (Gratings)  
  42.62.-b (Laser applications)  
  37.10.-x (Atom, molecule, and ion cooling methods)  
  37.10.Gh (Atom traps and guides)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFA1402004 and 2021YFF0603701) and the National Natural Science Foundation of China (Grant Nos. 12134014, U21A20433, U21A6006, and 92265108).
Corresponding Authors:  Chang-Ling Zou, Guo-Yong Xiang     E-mail:  clzou321@ustc.edu.cn;gyxiang@ustc.edu.cn

Cite this article: 

Chang-Jiang Huang(黄长江), Ling-Xiao Wang(王凌潇), Liang Chen(陈梁), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Chang-Ling Zou(邹长铃), and Guo-Yong Xiang(项国勇) Effective working regions of the grating chip for planar-integrated magneto-optics trap 2025 Chin. Phys. B 34 074211

[1] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[2] Matsukevich D and Kuzmich A 2004 Science 306 663
[3] Chou C W, Laurat J, Deng H, Choi K S, De Riedmatten H, Felinto D and Kimble H J 2007 Science 316 1316
[4] Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J and Pan J W 2008 Nature 454 1098
[5] Radnaev A, Dudin Y, Zhao R, Jen H, Jenkins S, Kuzmich A and Kennedy T 2010 Nat. Phys. 6 894
[6] Wang X, Wang J, Ren Z, Wen R, Zou C L, Siviloglou G A and Chen J 2022 Phys. Rev. Lett. 128 083605
[7] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313
[8] Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink C, Senko V, Vuletic V, Greiner M and Lukin M D 2016 Science 354 1024
[9] Barredo D, De Léséleuc S, Lienhard V, Lahaye T and Browaeys A 2016 Science 354 1021
[10] Saffman M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 202001
[11] Bluvstein D, Evered S J, Geim A A, Li S H, Zhou H,Manovitz T, Ebadi M, Cain M, Kalinowski M, Hangleiter D, et al. 2024 Nature 626 58
[12] Cronin A D, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051
[13] Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S and Müller H 2019 Sci. Adv. 5 eaax0800
[14] Asenbaum P, Overstreet C, Kim M, Curti J and Kasevich M A 2020 Phys. Rev. Lett. 125 191101
[15] Ludlow A D, BoydMM, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637
[16] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631
[17] Lee K, Kim J, Noh H and Jhe W 1996 Opt. Lett. 21 1177
[18] Vangeleyn M, Griffin P F, Riis E and Arnold A S 2009 Opt. Express 17 13601
[19] Pollock S, Cotter J, Laliotis A and Hinds E 2009 Opt. Express 17 14109
[20] Pollock S, Cotter J, Laliotis A, Ramirez-Martinez F and Hinds E 2011 New J. Phys. 13 043029
[21] Vangeleyn M, Griffin P F, Riis E and Arnold A S 2010 Opt. Lett. 35 3453
[22] Nshii C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E, Ironside C N, See P, Sinclair A, Riis E and Arnold A S 2013 Nat. Nanotech. 8 321
[23] McGilligan J P, Griffin P F, Riis E and Arnold A S 2015 Opt. Express 23 8948
[24] Cotter J, McGilligan J, Griffin P, Rabey I, Docherty K, Riis E, Arnold A and Hinds E 2016 Appl. Phys. B 122 1
[25] Lee J, Ding R, Christensen J, Rosenthal R R, Ison A, Gillund D P, Bossert D, Fuerschbach K H, Kindel W, Finnegan P S, et al. 2022 Nat. Commun. 13 5131
[26] Duan J, Liu X, Zhou Y, Xu X B, Chen L, Zou C L, Zhu Z, Yu Z, Ru N and Qu J 2022 Opt. Commun. 513 128087
[27] Chen L, Huang C J, Xu X B, Zhang Y C, Ma D Q, Lu Z T, Wang Z B, Chen G J, Zhang J Z, Tang H X, et al. 2022 Phys. Rev. Appl. 17 034031
[28] Yu Z, Zhu Y, Yao M, Qi F, Chen L, Zou C L, Duan J and Liu X 2024 Opt. Express 32 8919
[29] Huang C J, Liu H C, Chen L, Li C F, Guo G C, Zou C L and Xiang G Y 2025 Chin. Phys. Lett. 42 034203
[30] Vetsch E, Reitz D, Sagué G, Schmidt R, Dawkins S and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603
[31] Dang H, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 102508
[32] Ritsch H, Domokos P, Brennecke F and Esslinger T 2013 Rev. Mod. Phys. 85 553
[33] Goldman N, Juzeliunas G, O hberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[34] Yang P, Xia X, He H, Li S, Han X, Zhang P, Li G, Xu J, Yang Y, et al. 2019 Phys. Rev. Lett. 123 233604
[35] Hsu T W, Zhu W, Thiele T, Brown M O, Papp S B, Agrawal A and Regal C A 2022 PRX Quantum 3 030316
[36] Chen G J, Wang J J, Wang Z B, Zhao D, Zhang Y L, Liu A P, Dong C H, Huang K, Guo G C and Zou C L 2024 Opt. Express 32 39039
[37] Le Kien F, Gupta S D, Balykin V and Hakuta K 2005 Phys. Rev. A 72 032509
[38] Fujiwara M, Toubaru K, Noda T, Zhao H Q and Takeuchi S 2011 Nano Lett. 11 4362
[39] Yalla R, Le Kien F, Morinaga M and Hakuta K 2012 Phys. Rev. Lett. 109 063602
[40] Barker D S, Norrgard E B, Klimov N N, Fedchak J A, Scherschligt J and Eckel S 2019 Phys. Rev. Appl. 11 064023
[41] Blumenthal D J, Isichenko A and Chauhan N 2024 Optica Quantum 2 444
[42] Zhuang W, Zhao Y, Wang S, Fang Z, Fang F and Li T 2021 Chin. Opt. Lett. 19 030201
[43] Amico L, Anderson D, Boshier M, Brantut J P, Kwek L C, Minguzzi A and von Klitzing W 2022 Rev. Mod. Phys. 94 041001
[44] Ropp C, ZhuW, Yulaev A,Westly D, Simelgor G, Rakholia A, Lunden W, Sheredy D, Boyd M M, Papp S, et al. 2023 Light Sci. Appl. 12 83
[45] Isichenko A, Chauhan N, Bose D, Wang J, Kunz P D and Blumenthal D J 2023 Nat. Commun. 14 3080
[46] Yu M, Cheng R, Reimer C, He L, Luke K, Puma E, Shao L, Shams- Ansari A, Ren X, Grant H R, et al. 2023 Nat. Photon. 17 666
[47] Dalibard J and Cohen-Tannoudji C 1989 J. Opt. Soc. Am. B 6 2023
[1] Characterization of cold atoms based on photoionization momentum spectra
Zhixian Wu(吴志贤), Shushu Ruan(阮舒舒), Zhenjie Shen(沈镇捷), Jie Liu(刘杰), Xinglong Yu(余兴龙), Lifeng Chen(陈利丰), Bing Zhu(朱兵), Xincheng Wang(王新成), and Yuhai Jiang(江玉海). Chin. Phys. B, 2025, 34(7): 073202.
[2] Compact magneto-optical traps using planar optics
Zhi Tan(谭智), Bo Lu(鹿博), Chengyin Han(韩成银), and Chaohong Lee(李朝红). Chin. Phys. B, 2024, 33(9): 093701.
[3] Integrated, reliable laser system for an 87Rb cold atom fountain clock
Zhen Zhang(张镇), Jing-Feng Xiang(项静峰), Bin Xu(徐斌), Pan Feng(冯盼), Guang-Wei Sun(孙广伟),Yi-Ming Meng(孟一鸣), Si-Min-Da Deng(邓思敏达), Wei Ren(任伟),Jin-Yin Wan(万金银), and De-Sheng Lü(吕德胜). Chin. Phys. B, 2023, 32(1): 013202.
[4] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[5] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[6] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[7] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[8] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[9] Demonstration of a cold atom beam splitter on atom chip
Xiaojun Jiang(蒋小军), Xiaolin Li(李晓林), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(8): 080311.
[10] Microwave-mediated magneto-optical trap for polar molecules
Dizhou Xie(谢笛舟), Wenhao Bu(卜文浩), Bo Yan(颜波). Chin. Phys. B, 2016, 25(5): 053701.
[11] Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space
Xiaojun Jiang(蒋小军), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(3): 034204.
[12] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(9): 093701.
[13] Oscillation of the spin-currents of cold atoms on a ring due to light-induced spin-orbit coupling
Xie Wen-Fang (解文方), He Yan-Zhang (贺彦章), Bao Cheng-Guang (鲍诚光). Chin. Phys. B, 2015, 24(6): 060305.
[14] Comparison of two absorption imaging methods to detect cold atoms in magnetic trap
Wang Yan (王妍), Hu Zhao-Hui (胡朝晖), Qi Lu (亓鲁). Chin. Phys. B, 2015, 24(2): 024203.
[15] Photostop of iodine atoms from electrically oriented ICl molecules
Bao Da-Xiao (暴大小), Deng Lian-Zhong (邓联忠), Xu Liang (许亮), Yin Jian-Ping (印建平). Chin. Phys. B, 2015, 24(11): 113702.
No Suggested Reading articles found!