| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Effective working regions of the grating chip for planar-integrated magneto-optics trap |
| Chang-Jiang Huang(黄长江)1,2,†, Ling-Xiao Wang(王凌潇)1,2,†, Liang Chen(陈梁)1,2, Chuan-Feng Li(李传锋)1,2,3, Guang-Can Guo(郭光灿)1,2,3, Chang-Ling Zou(邹长铃)1,2,3,‡, and Guo-Yong Xiang(项国勇)1,2,3,§ |
1 Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China |
|
|
|
|
Abstract We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap (MOT). By scanning a blocking point in the incident laser beam, we identify four effective working regions of the laser beam contributing to MOT: a central region corresponding to the downward incident beam and three regions associated with the upward diffracted beams. The latter three regions are the effective regions of the grating chip. It is demonstrated that only three 3.5 mm radius grating regions can produce a MOT that is capable of trapping $10^5$ atoms with a temperature below 150 μK, retaining over 60% of atoms compared to a complete grating chip. This finding suggests that more than 60% of the grating chip area can be saved for other on-chip components, such as metasurfaces and nanophotonic devices, without significantly compromising MOT performance, paving the way for more compact and versatile atom-photon interfaces.
|
Received: 04 March 2025
Revised: 10 April 2025
Accepted manuscript online: 11 April 2025
|
|
PACS:
|
42.79.Dj
|
(Gratings)
|
| |
42.62.-b
|
(Laser applications)
|
| |
37.10.-x
|
(Atom, molecule, and ion cooling methods)
|
| |
37.10.Gh
|
(Atom traps and guides)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFA1402004 and 2021YFF0603701) and the National Natural Science Foundation of China (Grant Nos. 12134014, U21A20433, U21A6006, and 92265108). |
Corresponding Authors:
Chang-Ling Zou, Guo-Yong Xiang
E-mail: clzou321@ustc.edu.cn;gyxiang@ustc.edu.cn
|
Cite this article:
Chang-Jiang Huang(黄长江), Ling-Xiao Wang(王凌潇), Liang Chen(陈梁), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Chang-Ling Zou(邹长铃), and Guo-Yong Xiang(项国勇) Effective working regions of the grating chip for planar-integrated magneto-optics trap 2025 Chin. Phys. B 34 074211
|
[1] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413 [2] Matsukevich D and Kuzmich A 2004 Science 306 663 [3] Chou C W, Laurat J, Deng H, Choi K S, De Riedmatten H, Felinto D and Kimble H J 2007 Science 316 1316 [4] Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J and Pan J W 2008 Nature 454 1098 [5] Radnaev A, Dudin Y, Zhao R, Jen H, Jenkins S, Kuzmich A and Kennedy T 2010 Nat. Phys. 6 894 [6] Wang X, Wang J, Ren Z, Wen R, Zou C L, Siviloglou G A and Chen J 2022 Phys. Rev. Lett. 128 083605 [7] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313 [8] Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink C, Senko V, Vuletic V, Greiner M and Lukin M D 2016 Science 354 1024 [9] Barredo D, De Léséleuc S, Lienhard V, Lahaye T and Browaeys A 2016 Science 354 1021 [10] Saffman M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 202001 [11] Bluvstein D, Evered S J, Geim A A, Li S H, Zhou H,Manovitz T, Ebadi M, Cain M, Kalinowski M, Hangleiter D, et al. 2024 Nature 626 58 [12] Cronin A D, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051 [13] Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S and Müller H 2019 Sci. Adv. 5 eaax0800 [14] Asenbaum P, Overstreet C, Kim M, Curti J and Kasevich M A 2020 Phys. Rev. Lett. 125 191101 [15] Ludlow A D, BoydMM, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637 [16] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631 [17] Lee K, Kim J, Noh H and Jhe W 1996 Opt. Lett. 21 1177 [18] Vangeleyn M, Griffin P F, Riis E and Arnold A S 2009 Opt. Express 17 13601 [19] Pollock S, Cotter J, Laliotis A and Hinds E 2009 Opt. Express 17 14109 [20] Pollock S, Cotter J, Laliotis A, Ramirez-Martinez F and Hinds E 2011 New J. Phys. 13 043029 [21] Vangeleyn M, Griffin P F, Riis E and Arnold A S 2010 Opt. Lett. 35 3453 [22] Nshii C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E, Ironside C N, See P, Sinclair A, Riis E and Arnold A S 2013 Nat. Nanotech. 8 321 [23] McGilligan J P, Griffin P F, Riis E and Arnold A S 2015 Opt. Express 23 8948 [24] Cotter J, McGilligan J, Griffin P, Rabey I, Docherty K, Riis E, Arnold A and Hinds E 2016 Appl. Phys. B 122 1 [25] Lee J, Ding R, Christensen J, Rosenthal R R, Ison A, Gillund D P, Bossert D, Fuerschbach K H, Kindel W, Finnegan P S, et al. 2022 Nat. Commun. 13 5131 [26] Duan J, Liu X, Zhou Y, Xu X B, Chen L, Zou C L, Zhu Z, Yu Z, Ru N and Qu J 2022 Opt. Commun. 513 128087 [27] Chen L, Huang C J, Xu X B, Zhang Y C, Ma D Q, Lu Z T, Wang Z B, Chen G J, Zhang J Z, Tang H X, et al. 2022 Phys. Rev. Appl. 17 034031 [28] Yu Z, Zhu Y, Yao M, Qi F, Chen L, Zou C L, Duan J and Liu X 2024 Opt. Express 32 8919 [29] Huang C J, Liu H C, Chen L, Li C F, Guo G C, Zou C L and Xiang G Y 2025 Chin. Phys. Lett. 42 034203 [30] Vetsch E, Reitz D, Sagué G, Schmidt R, Dawkins S and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603 [31] Dang H, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 102508 [32] Ritsch H, Domokos P, Brennecke F and Esslinger T 2013 Rev. Mod. Phys. 85 553 [33] Goldman N, Juzeliunas G, O hberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401 [34] Yang P, Xia X, He H, Li S, Han X, Zhang P, Li G, Xu J, Yang Y, et al. 2019 Phys. Rev. Lett. 123 233604 [35] Hsu T W, Zhu W, Thiele T, Brown M O, Papp S B, Agrawal A and Regal C A 2022 PRX Quantum 3 030316 [36] Chen G J, Wang J J, Wang Z B, Zhao D, Zhang Y L, Liu A P, Dong C H, Huang K, Guo G C and Zou C L 2024 Opt. Express 32 39039 [37] Le Kien F, Gupta S D, Balykin V and Hakuta K 2005 Phys. Rev. A 72 032509 [38] Fujiwara M, Toubaru K, Noda T, Zhao H Q and Takeuchi S 2011 Nano Lett. 11 4362 [39] Yalla R, Le Kien F, Morinaga M and Hakuta K 2012 Phys. Rev. Lett. 109 063602 [40] Barker D S, Norrgard E B, Klimov N N, Fedchak J A, Scherschligt J and Eckel S 2019 Phys. Rev. Appl. 11 064023 [41] Blumenthal D J, Isichenko A and Chauhan N 2024 Optica Quantum 2 444 [42] Zhuang W, Zhao Y, Wang S, Fang Z, Fang F and Li T 2021 Chin. Opt. Lett. 19 030201 [43] Amico L, Anderson D, Boshier M, Brantut J P, Kwek L C, Minguzzi A and von Klitzing W 2022 Rev. Mod. Phys. 94 041001 [44] Ropp C, ZhuW, Yulaev A,Westly D, Simelgor G, Rakholia A, Lunden W, Sheredy D, Boyd M M, Papp S, et al. 2023 Light Sci. Appl. 12 83 [45] Isichenko A, Chauhan N, Bose D, Wang J, Kunz P D and Blumenthal D J 2023 Nat. Commun. 14 3080 [46] Yu M, Cheng R, Reimer C, He L, Luke K, Puma E, Shao L, Shams- Ansari A, Ren X, Grant H R, et al. 2023 Nat. Photon. 17 666 [47] Dalibard J and Cohen-Tannoudji C 1989 J. Opt. Soc. Am. B 6 2023 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|