Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014210    DOI: 10.1088/1674-1056/abcf33
Special Issue: SPECIAL TOPIC — Ultracold atom and its application in precision measurement
TOPICAL REVIEW—Ultracold atom and its application in precision measurement Prev   Next  

Improve the performance of interferometer with ultra-cold atoms

Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计)†
Abstract  Ultra-cold atoms provide ideal platforms for interferometry. The macroscopic matter-wave property of ultra-cold atoms leads to large coherent length and long coherent time, which enable high accuracy and sensitivity to measurement. Here, we review our efforts to improve the performance of the interferometer. We demonstrate a shortcut method for manipulating ultra-cold atoms in an optical lattice. Compared with traditional ones, this shortcut method can reduce the manipulation time by up to three orders of magnitude. We construct a matter-wave Ramsey interferometer for trapped motional quantum states and significantly increase its coherence time by one order of magnitude with an echo technique based on this method. Efforts have also been made to enhance the resolution by multimode scheme. Application of a noise-resilient multi-component interferometer shows that increasing the number of paths could sharpen the peaks in the time-domain interference fringes, which leads to a resolution nearly twice compared with that of a conventional double-path two-mode interferometer. With the shortcut method mentioned above, improvement of the momentum resolution could also be fulfilled, which leads to atomic momentum patterns less than 0.6 \(\hbar k_L\). To identify and remove systematic noises, we introduce the methods based on the principal component analysis (PCA) that reduce the noise in detection close to the \(1/\sqrt2\) of the photon-shot noise and separate and identify or even eliminate noises. Furthermore, we give a proposal to measure precisely the local gravity acceleration within a few centimeters based on our study of ultracold atoms in precision measurements.
Keywords:  precision measurement      ultra-cold atoms      atom interferometer      gravity measurements  
Received:  10 June 2020      Revised:  28 October 2020      Accepted manuscript online:  01 December 2020
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  67.10.Ba (Boson degeneracy)  
  07.60.Ly (Interferometers)  
  91.10.Pp (Geodetic techniques; gravimetric measurements and instruments)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0301501), the National Natural Science Foundation of China (Grant Nos. 61727819, 11934002, 91736208, and 11920101004), and the Project funded by China Postdoctoral Science Foundation (Grant No. 2020TQ0017).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计) Improve the performance of interferometer with ultra-cold atoms 2021 Chin. Phys. B 30 014210

1 Xu V, Jaffe M, Panda C D, Kristensen S L, Clark L W and Müller H 2019 Science 366 745
2 Cooper N R, Dalibard J and Spielman I B 2019 Rev. Mod. Phys. 91 015005
3 Niu L, Jin S, Chen X, Li X and Zhou X 2018 Phys. Rev. Lett. 121 265301
4 Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanàsz-Nagy M, Schmidt R, Grusdt F, Demler E, Greif D and Greiner M 2017 Nature 545 462
5 Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
6 Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
7 Szigeti S S, Nolan S P, Close J D and Haine S A 2020 Phys. Rev. Lett. 125 100402
8 Hardman K S, Everitt P J, McDonald G D, Manju P, Wigley P B, Sooriyabandara M A, Kuhn C C N, Debs J E, Close J D and Robins N P 2016 Phys. Rev. Lett. 117 138501
9 Hardman K S, Kuhn C C N, McDonald G D, Debs J E, Bennetts S, Close J D and Robins N P 2014 Phys. Rev. A 89 023626
10 Ye J, Blatt S, Boyd M M, Foreman S M, Hudson E R, Ido T, Lev B, Ludlow A D, Sawyer B C, Stuhl B and Zelinsky T 2007 Int. J. Mod. Phys. D 16 2481
11 Berrada T, Frank v S, Bücker R, Schumm T, Schaff J F and Schmiedmayer J 2013 Nat. Commun. 4 2077
12 Schreppler S, Spethmann N, Brahms N, Botter T, Barrios M and Stamper-Kurn D M 2014 Science 344 1486
13 Xiong W, Zhou X, Yue X, Chen X, Wu B and Xiong H 2013 Laser Phys. Lett. 10 125502
14 Derevianko A and Katori H 2011 Rev. Mod. Phys. 83 331
15 Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J and Ye J 2017 Science 358 90
16 Zhou X, Xu X, Chen X and Chen J 2010 Phys. Rev. A 81 012115
17 Moan E R, Horne R A, Arpornthip T, Luo Z, Fallon A J, Berl S J and Sackett C A 2020 Phys. Rev. Lett. 124 120403
18 Gauguet A, Canuel B, Lév\`eque T, Chaibi W and Landragin A 2009 Phys. Rev. A 80 063604
19 Le Gou\"et J, Mehlstäubler T E, Kim J, Merlet S, Clairon A, Landragin A and Pereira Dos Santos F 2008 Appl. Phys. B 92 133
20 Schmidt M, Senger A, Hauth M, Freier C, Schkolnik V and Peters A 2011 Gyroscopy Navig. 2 170
21 Stockton J K, Takase K and Kasevich M A 2011 Phys. Rev. Lett. 107 133001
22 Tackmann G, Berg P, Schubert C, Abend S, Gilowski M, Ertmer W and Rasel E M 2012 New J. Phys. 14 015002
23 Altin P A, Johnsson M T, Negnevitsky V, Dennis G R, Anderson R P, Debs J E, Szigeti S S, Hardman K S, Bennetts S, McDonald G D, Turner L D, Close J D and Robins N P 2013 New J. Phys. 15 023009
24 Carusotto I, Pitaevskii L, Stringari S, Modugno G and Inguscio M 2005 Phys. Rev. Lett. 95 093202
25 Weitz M, Heupel T and Hänsch T 1996 Phys. Rev. Lett. 77 2356
26 Petrovic J, Herrera I, Lombardi P, Schaefer F and Cataliotti F S 2013 New J. Phys. 15 043002
27 Hu D, Niu L, Jin S, Chen X, Dong G, Schmiedmayer J and Zhou X 2018 Commun. Phys. 1 29
28 Lu B, Zhou X, Vogt T, Fang Z and Chen X 2011 Phys. Rev. A 83 033620
29 Lu B, Vogt T, Liu X, Xu X, Zhou X and Chen X 2011 Phys. Rev. A 83 051608
30 Wang Z, Niu L, Zhang P, Wen M, Fang Z, Chen X and Zhou X 2013 Opt. Express 21 14377
31 Vogt T, Lu B, Liu X, Xu X, Zhou X and Chen X 2011 Phys. Rev. A 83 053603
32 Zhou X, Yang F, Yue X, Vogt T and Chen X 2010 Phys. Rev. A 81 013615
33 Zhou X, Xu X, Yin L, Liu W M and Chen X 2010 Opt. Express 18 15664
34 Zhou X, Fu J and Chen X 2009 Phys. Rev. A 80 063608
35 Xu X, Zhou X and Chen X 2009 Phys. Rev. A 79 033605
36 Li J, Zhou X, Yang F and Chen X 2008 Phys. Lett. A 372 4750
37 Guo R, Zhou X and Chen X 2008 Phys. Rev. A 78 052107
38 Yang F, Zhou X, Li J, Chen Y, Xia L and Chen X 2008 Phys. Rev. A 78 043611
39 Zhou X, Jin S and Schmiedmayer J 2018 New J. Phys. 20 055005
40 Masuda S, Nakamura K and Campo d A 2014 Phys. Rev. Lett. 113 063003
41 Chen X, Ruschhaupt A, Schmidt S, Campo d A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 104 063002
42 Liu X, Zhou X, Xiong W, Vogt T and Chen X 2011 Phys. Rev. A 83 063402
43 Zhai Y, Yue X, Wu Y, Chen X, Zhang P and Zhou X 2013 Phys. Rev. A 87 063638
44 Yue X, Zhai Y, Wang Z, Xiong H, Chen X and Zhou X 2013 Phys. Rev. A 88 013603
45 Liu X, Zhou X, Zhang W, Vogt T, Lu B, Yue X and Chen X 2011 Phys. Rev. A 83 063604
46 Zhai Y, Zhang P, Chen X, Dong G and Zhou X 2013 Phys. Rev. A 88 053629
47 Xiong W, Yue X, Wang Z, Zhou X and Chen X 2011 Phys. Rev. A 84 043616
48 Wang Z, Yang B, Hu D, Chen X, Xiong H, Wu B and Zhou X 2016 Phys. Rev. A 94 033624
49 Yang B, Jin S, Dong X, Liu Z, Yin L and Zhou X 2016 Phys. Rev. A 94 043607
50 Niu L, Hu D, Jin S, Dong X, Chen X and Zhou X 2015 Opt. Express 23 10064
51 Hu D, Niu L, Yang B, Chen X, Wu B, Xiong H and Zhou X 2015 Phys. Rev. A 92 043614
52 Guo X, Zhang W, Li Z, Shui H, Chen X and Zhou X 2019 Opt. Express 27 27786
53 Tang P, Peng P, Dong X, Chen X and Zhou X 2019 Chin. Phys. Lett. 36 050301
54 Niu L, Tang P, Yang B, Chen X, Wu B and Zhou X 2016 Phys. Rev. A 94 063603
55 Pezzé L and Smerzi A 2009 Phys. Rev. Lett. 102 100401
56 Lücke B, Scherer M, Kruse J, Pezzé L, Deuretzbacher F, Hyllus P, Topic O, Peise J, Ertmer W, Arlt J, Santos L, Smerzi A and Klempt C 2011 Science 334 773
57 Li W, Zhou X, Wang Y, Liang J and Liu W 2001 Phys. Rev. A 64 015602
58 Simsarian J E, Denschlag J, Edwards M, Clark C W, Deng L, Hagley E W, Helmerson K, Rolston S L and Phillips W. D 2000 Phys. Rev. Lett. 85 2040
59 Machluf S, Japha Y and Folman R 2013 Nat. Commun. 4 2424
60 Margalit Y, Zhou Z, Machluf S, Rohrlich D, Japha Y and Folman R 2015 Science 349 1205
61 Tang P, Peng P, Li Z, Chen X, Li X and Zhou X 2019 Phys. Rev. A 100 013618
62 Han M, Ge P, Shao Y, Gong Q and Liu Y 2018 Phys. Rev. Lett. 120 073202
63 Cronin A D, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051
64 Andrews M R, Townsend C.G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
65 Ma X, Xia L, Yang F, Zhou X, Wang Y, Guo H and Chen X 2006 Phys. Rev. A 73 013624
66 Majorana E 1932 Nuovo Cimento 9 43
67 Xia L, Xu X, Guo R, Yang F, Xiong W, Li J, Ma Q, Zhou X, Guo H and Chen X 2008 Phys. Rev. A 77 043622
68 Tang P, Dong X, Zhang W, Li Y, Chen X and Zhou X 2020 Phys. Rev. A 101 013612
69 Weihs G, Reck M, Weinfurter H and Zeilinger A 1996 Opt. Lett. 21 302
70 Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161
71 Chwede\'nczuk J, Piazza F and Smerzi A 2013 Phys. Rev. A 87 033607
72 Paul T and Qureshi T 2017 Phys. Rev. A 95 042110
73 Pikovski I, Zych M, Costa F and Brukner \vC 2017 New J. Phys. 19 025011
74 Fort C, Maddaloni P, Minardi F, Modugno M and Inguscio M 2001 Opt. Lett. 26 1039
75 Söderholm J, Björk G, Hessmo B and Inoue S 2003 Phys. Rev. A 67 053803
76 Chwede\'nczuk J 2017 Phys. Rev. A 96 032320
77 Segal S R, Diot Q, Cornell E A, Zozulya A A and Anderson D Z 2010 Phys. Rev. A 81 053601
78 Chiow S W, Kovachy T, Chien H C and Kasevich M A 2011 Phys. Rev. Lett. 107 130403
79 Niu L, Guo X, Zhan Y, Chen X, Liu W and Zhou X 2018 Appl. Phys. Lett. 113 144103
80 Jin S, Guo X, Peng P, Chen X, Li X and Zhou X 2019 New J. Phys. 21 073015
81 Becker C, Soltan-Panahi P, Kronjäger J, Dörscher S, Bongs K and Sengstock K 2010 New J. Phys. 12 065025
82 Gatzke M, Birkl G, Jessen P S, Kastberg A, Rolston S L and Phillips W D 1997 Phys. Rev. A 55 R3987
83 Levine M D 1969 Proc. IEEE 57 1391
84 Dubessy R, De Rossi C, Badr T, Longchambon L and Perrin H 2014 New J. Phys. 16 122001
85 Alberti A, Robens C, Alt W, Brakhane S, Karski M, Reimann R, Widera A and Meschede D 2016 New J. Phys. 18 053010
86 Ockeloen C F, Tauschinsky A F, Spreeuw R J C and Whitlock S 2010 Phys. Rev. A 82 061606
87 Cao S, Tang P, Guo X, Chen X, Zhang W and Zhou X 2019 Opt. Express 27 12710
88 Penrose O and Onsager L 1956 Phys. Rev. 104 576
89 Gustavson T L, Landragin A and Kasevich M A 2000 Classical Quant. Grav. 17 2385
90 Müller H, Chiow S W, Herrmann S, Chu S and Chung K Y 2008 Phys. Rev. Lett. 100 031101
91 Louchet-Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S and Santos F P D 2011 New J. Phys. 13 065025
92 Fixler J B, Foster G T, McGuirk J M and Kasevich M. A 2007 Science 315 74
93 Lamporesi G, Bertoldi A, Cacciapuoti L, Prevedelli M and Tino G. M 2008 Phys. Rev. Lett. 100 050801
94 Hohensee M A, Müller H and Wiringa R B 2013 Phys. Rev. Lett. 111 151102
95 Hohensee M A, Chu S, Peters A and Müller H 2011 Phys. Rev. Lett. 106 151102
96 Andia M, Jannin R, Nez F, Biraben F, Guellati-Khélifa S and Cladé P 2013 Phys. Rev. A 88 031605
97 Peik E, Ben Dahan M, Bouchoule I, Castin Y,Salomon C 1997 Phys. Rev. A 55 2989
98 Ben Dahan M, Peik E, Reichel J, Castin Y and Salomon C 1996 Phys. Rev. Lett. 76 4508
99 Wilkinson S R, Bharucha C F, Madison K W, Niu Q and Raizen M G 1996 Phys. Rev. Lett. 76 4512
100 Battesti R, Cladé P, Guellati-Khélifa S, Schwob C, Grémaud B, Nez F, Julien L and Biraben F 2004 Phys. Rev. Lett. 92 253001
101 Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
102 Cladé P, Mirandes d E, Cadoret M, Guellati-Khélifa S, Schwob C, Nez F, Julien L and Biraben F 2006 Phys. Rev. A 74 052109
103 Abend S, Gebbe M, Gersemann M, Ahlers H, Müntinga H, Giese E, Gaaloul N, Schubert C, Lämmerzahl C, Ertmer W, Schleich W P and Rasel E M 2016 Phys. Rev. Lett. 117 203003
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[3] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[4] Preparation of a two-state mixture of ultracold fermionic atoms with balanced population subject to the unstable magnetic field
Donghao Li(李东豪), Lianghui Huang(黄良辉), Guoqi Bian(边国旗), Jie Miao(苗杰), Liangchao Chen(陈良超), Zengming Meng(孟增明), Wei Han(韩伟), and Pengjun Wang(王鹏军). Chin. Phys. B, 2021, 30(9): 090303.
[5] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang(张球新), Yirong Wang(王艺蓉), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Xiang Zhang(张翔), Kuiyi Gao(高奎意), Wei Zhang(张威). Chin. Phys. B, 2020, 29(9): 093203.
[6] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[7] Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer
Wei-Tao Duan(段维涛), Chuan He(何川), Si-Tong Yan(闫思彤), Yu-Hang Ji(冀宇航), Lin Zhou(周林), Xi Chen(陈曦), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2020, 29(7): 070305.
[8] Interference properties of a trapped atom interferometer in two asymmetric optical dipole traps
Li-Yong Wang(王立勇), Xiao Li(李潇), Kun-Peng Wang(王坤鹏), Yin-Xue Zhao(赵吟雪), Ke Di(邸克), Jia-Jia Du(杜佳佳), and Jian-Gong Hu(胡建功). Chin. Phys. B, 2020, 29(12): 123701.
[9] Systematic error suppression scheme of the weak equivalence principle test by dual atom interferometers in space based on spectral correlation
Jian-Gong Hu(胡建功), Xi Chen(陈曦), Li-Yong Wang(王立勇), Qing-Hong Liao(廖庆洪), and Qing-Nian Wang(汪庆年)$. Chin. Phys. B, 2020, 29(11): 110305.
[10] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[11] Comparison of the sensitivities for atom interferometers in two different operation methods
Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhu Zhu(祝竺), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2018, 27(1): 013701.
[12] Common-mode noise rejection using fringe-locking method in WEP test by simultaneous dual-species atom interferometers
Xiao-Bing Deng(邓小兵), Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2017, 26(4): 043702.
[13] Investigation of the thermal adaptability for a mobile cold atom gravimeter
Qi-Yu Wang(王启宇), Zhao-Ying Wang(王兆英), Zhi-Jie Fu(付志杰), Qiang Lin(林强). Chin. Phys. B, 2016, 25(12): 123701.
[14] Wave–particle duality in a Raman atom interferometer
Jia Ai-Ai (贾爱爱), Yang Jun (杨俊), Yan Shu-Hua (颜树华), Hu Qing-Qing (胡青青), Luo Yu-Kun (罗玉昆), Zhu Shi-Yao (朱诗尧). Chin. Phys. B, 2015, 24(8): 080302.
[15] Precision measurement with atom interferometry
Wang Jin (王谨). Chin. Phys. B, 2015, 24(5): 053702.
No Suggested Reading articles found!