ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space |
Xiaojun Jiang(蒋小军)1,2, Haichao Zhang(张海潮)1, Yuzhu Wang(王育竹)1 |
1. Key Laboratory for Quantum Optics and Center for Cold Atom Physics of Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We report the experimental investigation of electromagnetically induced transparency (EIT) in a Zeeman-sublevels Λ-type system of cold 87Rb atoms in free space. We use the Zeeman substates of the hyperfine energy states 52 S1/2, F=2 and 52 P3/2, F'=2 of 87Rb D2 line to form a Λ-type EIT scheme. The EIT signal is obtained by scanning the probe light over 1 MHz in 4 ms with an 80 MHz arbitrary waveform generator. More than 97% transparency and 100 kHz EIT window are observed. This EIT scheme is suited for an application of pulsed coherent storage atom clock (Yan B, et al. 2009 Phys. Rev. A 79 063820).
|
Received: 10 September 2015
Revised: 16 October 2015
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107). |
Corresponding Authors:
Yuzhu Wang
E-mail: yzwang@mail.shcnc.ac.cn
|
Cite this article:
Xiaojun Jiang(蒋小军), Haichao Zhang(张海潮), Yuzhu Wang(王育竹) Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space 2016 Chin. Phys. B 25 034204
|
[1] |
Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
|
[2] |
Kocharovskaya O A and Khanin Y I 1986 Sov. Phys. JETP 63 945
|
[3] |
Boller K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
|
[4] |
Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
|
[5] |
Budker D, Kimball D F, Rochester S M and Yashchuk V V 1999 Phys. Rev. Lett. 83 1767
|
[6] |
Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094
|
[7] |
Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Phys. Rev. Lett. 86 783
|
[8] |
Fleischhauer M and Lukin M D 2002 Phys. Rev. A 65 022314
|
[9] |
Gorshkov A V, André A, Fleischhauer M, Sorensen A S and Lukin M D 2007 Phys. Rev. Lett. 98 123601
|
[10] |
Phillips N B, Gorshkov A V and Novikova I 2008 Phys. Rev. A 78 023801
|
[11] |
Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
|
[12] |
Fleischhauer M, Matsko A B and Scully M O 2000 Phys. Rev. A 62 013808
|
[13] |
Katsoprinakis G, Petrosyan D and Kominis I K 2006 Phys. Rev. Lett. 97 230801
|
[14] |
Belfi J, Bevilacqua G, Biancalana V, Cartaleva S, Dancheva Y and Moi L 2007 J Opt. Soc. Am. B 24 2357
|
[15] |
Knappe S, Shah V, Schwindt P D, Holberg L, Kitching J, Liew L A and Moreland J 2004 Appl. Phys. Lett. 85 1460
|
[16] |
Affolderbach C, Andreeva C, Cartaleva S, Karaulanov T, Mileti G and Slavov D 2005 Appl. Phys. B 80 841
|
[17] |
Gea-Banacloche J, Li Y Q, Jin S Z and Xiao M 1995 Phys. Rev. A 51 576
|
[18] |
Chang R Y, Fang W C, He Z S, Ke B C, Chen P N and Tsai C C 2007 Phys. Rev. A 76 053420
|
[19] |
Welch G R, Padmabandu G G, Fry E S, Lukin M D, Nikonov D E, Sander F, Scully M O, Weis A and Tittel F K 1998 Found. Phys. 28 621
|
[20] |
Yan M, Rickey E G and Zhu Y 2001 J. Opt. Soc. Am. B 18 1057
|
[21] |
Ahufinger V, Corbaln R, Cataliotti F, Burger S, Minardi F and Fort C 2002 Opt. Commun. 211 159
|
[22] |
Ersfeld B and Jaroszynski D A 2001 Laser and Particle Beams 19 175
|
[23] |
Chen Y C, Lin C W and Yu I A 2000 Phys. Rev. A 61 053805
|
[24] |
Tiwari V B, Singh S, Rawat H S, Manoranjan P S and Mehendale S C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095503
|
[25] |
Xiao F, Guo R M, Chen S, Zhang Y, Li L M and Chen X Z 2003 Chin. Phys. Lett. 20 1257
|
[26] |
Nikolic S N, Djokic V, Lucic N M, Krmpot A J, Cuk S M, Radonjic M and Jelenkovic B M 2012 Phys. Scr. 2012 T149
|
[27] |
Yan B, Ma Y S and Wang Y Z 2009 Phys. Rev. A 79 063820
|
[28] |
Fortágh J and Zimmermann C 2007 Rev. Mod. Phys. 79 235
|
[29] |
Li Y Q and Xiao M 1995 Phys. Rev. A 51 R2703
|
[30] |
Reichel J, Hänsel W and Hänsch T W 1999 Phys. Rev. Lett. 83 3398
|
[31] |
Steck D A 2003 Rubidium 87 D Line Data URL http://steck.us/alkalidata
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|