Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 034204    DOI: 10.1088/1674-1056/25/3/034204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space

Xiaojun Jiang(蒋小军)1,2, Haichao Zhang(张海潮)1, Yuzhu Wang(王育竹)1
1. Key Laboratory for Quantum Optics and Center for Cold Atom Physics of Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We report the experimental investigation of electromagnetically induced transparency (EIT) in a Zeeman-sublevels Λ-type system of cold 87Rb atoms in free space. We use the Zeeman substates of the hyperfine energy states 52 S1/2, F=2 and 52 P3/2, F'=2 of 87Rb D2 line to form a Λ-type EIT scheme. The EIT signal is obtained by scanning the probe light over 1 MHz in 4 ms with an 80 MHz arbitrary waveform generator. More than 97% transparency and 100 kHz EIT window are observed. This EIT scheme is suited for an application of pulsed coherent storage atom clock (Yan B, et al. 2009 Phys. Rev. A 79 063820).

Keywords:  electromagnetically induced transparency      Zeeman-sublevels      cold atoms  
Received:  10 September 2015      Revised:  16 October 2015      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.62.Fi (Laser spectroscopy)  
  32.60.+i (Zeeman and Stark effects)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).

Corresponding Authors:  Yuzhu Wang     E-mail:  yzwang@mail.shcnc.ac.cn

Cite this article: 

Xiaojun Jiang(蒋小军), Haichao Zhang(张海潮), Yuzhu Wang(王育竹) Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space 2016 Chin. Phys. B 25 034204

[1] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[2] Kocharovskaya O A and Khanin Y I 1986 Sov. Phys. JETP 63 945
[3] Boller K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[4] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[5] Budker D, Kimball D F, Rochester S M and Yashchuk V V 1999 Phys. Rev. Lett. 83 1767
[6] Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094
[7] Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Phys. Rev. Lett. 86 783
[8] Fleischhauer M and Lukin M D 2002 Phys. Rev. A 65 022314
[9] Gorshkov A V, André A, Fleischhauer M, Sorensen A S and Lukin M D 2007 Phys. Rev. Lett. 98 123601
[10] Phillips N B, Gorshkov A V and Novikova I 2008 Phys. Rev. A 78 023801
[11] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
[12] Fleischhauer M, Matsko A B and Scully M O 2000 Phys. Rev. A 62 013808
[13] Katsoprinakis G, Petrosyan D and Kominis I K 2006 Phys. Rev. Lett. 97 230801
[14] Belfi J, Bevilacqua G, Biancalana V, Cartaleva S, Dancheva Y and Moi L 2007 J Opt. Soc. Am. B 24 2357
[15] Knappe S, Shah V, Schwindt P D, Holberg L, Kitching J, Liew L A and Moreland J 2004 Appl. Phys. Lett. 85 1460
[16] Affolderbach C, Andreeva C, Cartaleva S, Karaulanov T, Mileti G and Slavov D 2005 Appl. Phys. B 80 841
[17] Gea-Banacloche J, Li Y Q, Jin S Z and Xiao M 1995 Phys. Rev. A 51 576
[18] Chang R Y, Fang W C, He Z S, Ke B C, Chen P N and Tsai C C 2007 Phys. Rev. A 76 053420
[19] Welch G R, Padmabandu G G, Fry E S, Lukin M D, Nikonov D E, Sander F, Scully M O, Weis A and Tittel F K 1998 Found. Phys. 28 621
[20] Yan M, Rickey E G and Zhu Y 2001 J. Opt. Soc. Am. B 18 1057
[21] Ahufinger V, Corbaln R, Cataliotti F, Burger S, Minardi F and Fort C 2002 Opt. Commun. 211 159
[22] Ersfeld B and Jaroszynski D A 2001 Laser and Particle Beams 19 175
[23] Chen Y C, Lin C W and Yu I A 2000 Phys. Rev. A 61 053805
[24] Tiwari V B, Singh S, Rawat H S, Manoranjan P S and Mehendale S C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095503
[25] Xiao F, Guo R M, Chen S, Zhang Y, Li L M and Chen X Z 2003 Chin. Phys. Lett. 20 1257
[26] Nikolic S N, Djokic V, Lucic N M, Krmpot A J, Cuk S M, Radonjic M and Jelenkovic B M 2012 Phys. Scr. 2012 T149
[27] Yan B, Ma Y S and Wang Y Z 2009 Phys. Rev. A 79 063820
[28] Fortágh J and Zimmermann C 2007 Rev. Mod. Phys. 79 235
[29] Li Y Q and Xiao M 1995 Phys. Rev. A 51 R2703
[30] Reichel J, Hänsel W and Hänsch T W 1999 Phys. Rev. Lett. 83 3398
[31] Steck D A 2003 Rubidium 87 D Line Data URL http://steck.us/alkalidata
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Integrated, reliable laser system for an 87Rb cold atom fountain clock
Zhen Zhang(张镇), Jing-Feng Xiang(项静峰), Bin Xu(徐斌), Pan Feng(冯盼), Guang-Wei Sun(孙广伟),Yi-Ming Meng(孟一鸣), Si-Min-Da Deng(邓思敏达), Wei Ren(任伟),Jin-Yin Wan(万金银), and De-Sheng Lü(吕德胜). Chin. Phys. B, 2023, 32(1): 013202.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[5] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[6] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[7] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[8] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[9] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[10] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[11] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[12] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[13] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[14] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[15] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
No Suggested Reading articles found!