Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 024203    DOI: 10.1088/1674-1056/24/2/024203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Comparison of two absorption imaging methods to detect cold atoms in magnetic trap

Wang Yan (王妍), Hu Zhao-Hui (胡朝晖), Qi Lu (亓鲁)
Science and Technology on Inertial Laboratory, School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China
Abstract  Two methods of absorption imaging to detect cold atoms in a magnetic trap are implemented for a high-precision cold atom interferometer. In the first method, a probe laser which is in resonance with a cycle transition frequency is used to evaluate the quantity and distribution of the atom sample. In the second method, the probe laser is tuned to an open transition frequency, which stimulates a few and constant number of photons per atom. This method has a shorter interaction time and results in absorption images which are not affected by the magnetic field and the light field. We make a comparison of performance between these two imaging methods in the sense of parameters such as pulse duration, light intensity, and magnetic field strength. The experimental results show that the second method is more reliable when detecting the quantity and density profiles of the atoms. These results fit well to the theoretical analysis.
Keywords:  absorption imaging      open-channel transition      cold atoms      magnetic trap  
Received:  24 July 2014      Revised:  03 September 2014      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  32.80.-t (Photoionization and excitation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61227902 and 61121003) and the National Defense Basic Scientific Research Program of China (Grant No. B2120132005).
Corresponding Authors:  Hu Zhao-Hui     E-mail:  huzh@buaa.edu.cn

Cite this article: 

Wang Yan (王妍), Hu Zhao-Hui (胡朝晖), Qi Lu (亓鲁) Comparison of two absorption imaging methods to detect cold atoms in magnetic trap 2015 Chin. Phys. B 24 024203

[1] Li M, Chen D H and Chen C L 2013 Acta Phys. Sin. 62 183201 (in Chinese)
[2] Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, De Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Coq Y L, Barber Z W, Poli N, Lemke N D, Beck K M and Oates C W 2008 Science 319 1805
[3] He L X and Wang Y Z 2004 Chin. Phys. 13 754
[4] Kasevich M and Chu S 1991 Phys. Rev. Lett. 67 181
[5] Simien C E, Chen Y C, Gupta P, Laha S, Martinez Y N, Mickelson P G, Nagel S B and Killian T C 2004 Phys. Rev. Lett. 92 143001
[6] Mhaskara R R, Olson S E and Raithel G 2007 Eur. Phys. J. D 41 221
[7] Han J S, Xu X P, Zhang H C and Wang Y Z 2013 Chin. Phys. B 22 023702
[8] Olson S E, Mhaskar R R and Raithel G 2006 Phys. Rev. A 73 033622
[9] Liu N C and Yin J P 2003 Chin. Phys. 12 955
[10] Moravchik D 2009 "Imaging Methods of Cold Atoms" (MS Thesis) (Beer-Sheva: Ben-Gurion University of the Negev)
[11] Steck D A 2010 "Cesium D Line Data" (Ph. D Dissertation) Oregon Center for Optics and Department of Physics, University of Oregon, USA
[12] Wohlleben W, Chevy F, Madison K and Dalibard J 2001 Eur. Phys. J. D 15 237
[13] Bao A, Chen Y H and Zhang X Z 2013 Chin. Phys. B 22 110309
[14] Shao H L, Li D, Yan X, Chen L Q and Yuan C H 2014 Acta Phys. Sin. 63 014202 (in Chinese)
[15] Lu J F, Zhou Q, Pan X Q and Yin J P 2013 Acta Phys. Sin. 62 233701 (in Chinese)
[16] Feng Y Y, Zhu C X, Wang X J, Xue H B, Ye X Y and Zhou Z Y 2009 Chin. Phys. B 18 2272
[17] Mhaskar R R, Olson S E and Raithel G 2007 Eur. Phys. J. D 41 221
[18] Wu S J 2007 "Light Pulse Talbot-Lau Interferometry with Magnetically Guided Atoms" (Ph. D. Dissertation) (Cambridge: Harvard University)
[19] Li X L, Ke M, Yan B and Wang Y Z 2007 Chin. Opt. Lett. 5 128
[20] Killian T C, Chen Y C, Gupta P, Laha S, Martinez Y N, Mickelson P G, Nagel S B, Saenz A D and Simien C E 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S351
[21] Wang Y Z, Zhou S Y, Long Q, Zhou S Y and Fu H X 2003 Chin. Phys. Lett. 20 799
[1] Integrated, reliable laser system for an 87Rb cold atom fountain clock
Zhen Zhang(张镇), Jing-Feng Xiang(项静峰), Bin Xu(徐斌), Pan Feng(冯盼), Guang-Wei Sun(孙广伟),Yi-Ming Meng(孟一鸣), Si-Min-Da Deng(邓思敏达), Wei Ren(任伟),Jin-Yin Wan(万金银), and De-Sheng Lü(吕德胜). Chin. Phys. B, 2023, 32(1): 013202.
[2] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[3] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[4] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[5] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[6] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[7] Direct loading of atoms from a macroscopic quadrupole magnetic trap into a microchip trap
Jun Cheng(程俊), Jing-fang Zhang(张敬芳), Xin-ping Xu(许忻平), Hai-chao Zhang(张海潮), Yu-zhu Wang(王育竹). Chin. Phys. B, 2017, 26(3): 033701.
[8] Demonstration of a cold atom beam splitter on atom chip
Xiaojun Jiang(蒋小军), Xiaolin Li(李晓林), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(8): 080311.
[9] Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space
Xiaojun Jiang(蒋小军), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(3): 034204.
[10] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(9): 093701.
[11] Oscillation of the spin-currents of cold atoms on a ring due to light-induced spin-orbit coupling
Xie Wen-Fang (解文方), He Yan-Zhang (贺彦章), Bao Cheng-Guang (鲍诚光). Chin. Phys. B, 2015, 24(6): 060305.
[12] Photostop of iodine atoms from electrically oriented ICl molecules
Bao Da-Xiao (暴大小), Deng Lian-Zhong (邓联忠), Xu Liang (许亮), Yin Jian-Ping (印建平). Chin. Phys. B, 2015, 24(11): 113702.
[13] Systematically investigating the polarization gradient cooling in an optical molasses of ultracold cesium atoms
Ji Zhong-Hua (姬中华), Yuan Jin-Peng (元晋鹏), Zhao Yan-Ting (赵延霆), Chang Xue-Fang (常雪芳), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2014, 23(11): 113702.
[14] Nanoscale guiding for cold atoms based on surface plasmons alongtips of metallic wedges
Wang Zheng-Ling (王正岭), Tang Wei-Min (唐伟民), Zhou Ming (周明), Gao Chuan-Yu (高传玉). Chin. Phys. B, 2013, 22(7): 073701.
[15] Production of 87Rb Bose-Einstein condensates in a hybrid trap
Duan Ya-Fan (段亚凡), Jiang Bo-Nan (姜伯楠), Sun Jian-Fang (孙剑芳), Liu Kang-Kang (刘亢亢), Xu Zhen (徐震), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(5): 056701.
No Suggested Reading articles found!