Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 074210    DOI: 10.1088/1674-1056/adc665
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Pulsed single-longitudinal-mode operation based on modal-gain difference in repetitively passively Q-switched lasers

Jinhe Yuan(袁晋鹤)†, Mofan Yang(杨莫凡), and Ziyi Wu(武子怡)
College of Physical Science and Technology, Heilongjiang University, Harbin 150080, China
Abstract  The pulsed single-longitudinal-mode (SLM) operation caused by the modal-gain difference in a repetitively passively $Q$-switched (PQS) laser is studied in detail. Firstly, the analytical expressions for the pulse buildup-time difference of repetitively PQS four-level and quasi-three-level lasers have been developed respectively. Then, according to the temporal criterion, the required conditions for repetitively PQS four-level and quasi-three-level lasers to achieve SLM operation are analyzed. The analysis results show that in addition to the short cavity is conducive to obtaining the pulsed SLM laser, the use of a lower pump power (compared to the threshold power) will help to obtain a longer pulse buildup-time difference and thus enabling the SLM operation. Moreover, it is worth noting that for the quasi-three-level lasers, the pulse buildup-time difference also depends on the initial population inversion density. The results also reveal that setting resonator parameters that can obtain large initial population inversion density will be helpful to the SLM operation in both four-level and quasi-three-level regimes. In addition, the use of saturable absorber with a low absorption cross-section ratio between the excited state and ground state also contributes to the realization of the SLM. Finally, the optimization model of passively $Q$-switched single-longitudinal-mode laser is established. In addition to predicting the output performance of the laser, this model can also be used to obtain the optimal resonator parameters and the upper limit of pump power for SLM operation.
Keywords:  saturable absorber      single-longitudinal-mode      $Q$-switching      modal-gain difference  
Received:  23 February 2025      Revised:  23 March 2025      Accepted manuscript online:  28 March 2025
PACS:  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.60.Gd (Q-switching)  
Fund: Project supported by National Natural Science Foundation of China (Grant No. 62205102).
Corresponding Authors:  Jinhe Yuan     E-mail:  hityuanjinhe@163.com

Cite this article: 

Jinhe Yuan(袁晋鹤), Mofan Yang(杨莫凡), and Ziyi Wu(武子怡) Pulsed single-longitudinal-mode operation based on modal-gain difference in repetitively passively Q-switched lasers 2025 Chin. Phys. B 34 074210

[1] Yao B Q, Yuan J H, Li J, Dai T Y, Duan X M, Shen Y J, Cui Z and Pan Y B 2015 Opt. Lett. 40 348
[2] Xiao Y J, Xing X W, Cui W W, Chen Y Q, Zhou Q and Liu W J 2023 Chin. Phys. Lett. 40 054201
[3] Wang H Y, Xiao Y J, Liu Q, Xing X W, Yang H J and Liu W J 2023 Chin. Phys. Lett. 40 114204
[4] Si Z Z, Dai C Q and Liu W 2024 Chin. Phys. Lett. 41 020502
[5] Zhang S Y, Liu X X, Guo L, Fan M Q, Lou F, Gao P, Guo G H, Yang J L, Liu J J, Li T, Yang K J, Zhao S J, Liu J, Xu J Q and Hang Y 2017 IEEE. Photon. Tech. Lett. 29 2258
[6] Guo L, Li T, Zhang S Y, Wang M J, Zhao S Z, Yang K J, Li D C and Yan Z Y 2017 Opt. Mater. Express 7 292917
[7] Luo H Y, Li J F, Gao Y, Xu Y, Li X H and Liu Y 2019 Opt. Lett. 44 2322
[8] Sebbag D, Korenfeld A, Griebner U, Elooz D, Shalom E and Noach S 2015 Opt. Lett. 40 1250
[9] Yu H H, Petrov V, Griebner U, Parisi D, Veronesi S and Tonelli M 2012 Opt. Lett. 37 2544
[10] Mehner E, Bernard B, Giessen H, Kopf D and Braun B 2014 Opt. Lett. 39 2940
[11] Sooy W R 1965 Appl. Phys. Lett. 7 36
[12] Grisard A, Faure B, Souhaité G and Lallier E 2014 Advanced solid state lasers (p. ATu2A-39)
[13] Jin C J, Bai Y, Li L F, Jiang T, Ren Z Y and Bai J T 2015 Laser. Phys. Lett. 25 015001
[14] Moskalev I S, Fedorov V V, Gapontsev V P, Gapontsev D V, Platonov N S and Mirov S B 2008 Opt. Express 16 19427
[15] Sun Z, Cheng G H, Liu H, Wang X and Wang Y G 2017 Chin. Phys. Lett. 34 014204
[16] Negri J R, Pirzio F and Agnesi A 2018 Opt. Express 26 324745
[17] Xue F, Zhang S S, Cong Z H, Huang Q J, Guan C, Wu Q W, Chen H, Bai F and Liu Z J 2018 Laser Phys. Lett. 15 035001
[18] Xue J W, Pan Y, Chen W, Fang Y J, Xie H J, Xie M Y, Sun L and Su B H 2016 J. Opt. Soc. Am. B 33 1815
[19] Gao M W, Yue F Y, Feng T, Li J L and Gao C Q 2014 Chin. Opt. Lett. 12 021404
[20] Liu Q, Lei M, Gong M L, Huang L, He F H, Fu X and Yan X P 2007 Appl. Phys. B 89 155
[21] Pan H F, Xu S X and Zeng H P 2005 Opt. Express 13 2755
[22] Terekhov Y, Moskalev I S, Martyshkin D V, Ferorov V V and Mirov S B 2010 Proc. SPIE 7578 75781
[23] Dai T Y,Wang Y P,Wu X S,Wu J, Yao B Q, Ju Y L and Shen Y J 2018 Opt. Laser Technol. 106 7
[24] Shi Y, Gao C Q, Wang S, Li S H, Song R, Zhang M, Gao M W and Wang Q 2019 Opt. Express 27 350016
[25] Isyanova Y and Welford D 1999 Opt. Lett. 24 1035
[26] Terekhov Y V, Martyshkin D V, Fedorov V V, Moskalev I S and Mirov S B 2014 Laser Phys. Lett. 24 025003
[27] Li Q S, Dong Y, Liu Y, Zhang X H, Yu Y J and Jin G Y 2017 Opt. Laser Technol. 94 165
[28] Liu C, Jin L, Dai W C, Dong Y and Jin G Y 2024 Opt. Express 32 526099
[29] Degnan J J 1995 IEEE J. Quantum Electron 31 1890
[30] Degnan J J 1989 IEEE J. Quantum Electron 25 214
[31] Zhang X Y, Zhao S Z, Wang Q P, Zhang Q D, Sun L K and Zhang S J 1997 IEEE. J. Quantum Electron 33 2286
[32] Koechner W 2006 Solid-state laser engineering (New York: Springer) p. 57
[33] Stoneman R C and Esterowitz L 1990 Opt. Lett. 15 486
[34] Payne S A, Chase L L, Smith L K, Kway W L and Krupke W F 1992 IEEE J. Quantum Electron 28 2619
[35] Rustad G and Stenersen K 1996 IEEE. J. Quantum Electron 32 1645
[1] TaS2-based saturable absorbers for Q-switched fiber laser applications
Qinghua Wang(汪情华), Hao Sun(孙昊), Chenhao Lu(鲁晨浩), Huiran Yang(杨慧苒), and Lu Li(李璐). Chin. Phys. B, 2025, 34(7): 074209.
[2] High-efficiency Yb3+-doped fiber laser with highly optical nonlinear Bi4Br4-based saturable absorber
Mengyuan Liu(刘梦媛), Yechao Han(韩烨超), Qi Liu(刘齐), Hao Teng(滕浩), Xiwei Huang(黄玺玮), Xiaowei Xing(邢笑伟), Xiangyu Qiao(乔向宇), Guojing Hu(胡国静), Xiao Lin(林晓), Haitao Yang(杨海涛), Zhiyi Wei(魏志义), and Wenjun Liu(刘文军). Chin. Phys. B, 2025, 34(6): 064202.
[3] Femtosecond mode-locking and soliton molecule generation based on a GaAs saturable absorber
Chen-Yan Zhang(张辰妍), Xin-He Dou(窦鑫河), Zhen Chen(陈震), Jing-Han Zhao(赵靖涵), Wei Sun(孙薇), Ze-Yu Fan(樊泽宇), Tao Zhang(张涛), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国). Chin. Phys. B, 2025, 34(1): 014205.
[4] Manganese dioxide as wide adaptive ultrafast photonic device for pulsed laser generation
Xin-He Dou(窦鑫河), Zhen Chen(陈震), Chen-Yan Zhang(张辰妍), Xiang Li(李响), Fei-Hong Qiao(乔飞鸿), Bo-Le Song(宋博乐), Shan Wang(王珊), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国). Chin. Phys. B, 2024, 33(11): 114202.
[5] Broadband third-order optical nonlinearities of layered franckeite towards mid-infrared regime
Zhi-Qiang Xu(徐志强), Tian-Tian Zhou(周甜甜), Jie Li(李洁), Dong-Yang Liu(刘东阳), Yuan He(何源), Ning Li(李宁), Xiao Liu(刘潇), Li-Li Miao(缪丽丽), Chu-Jun Zhao(赵楚军), and Shuang-Chun Wen(文双春). Chin. Phys. B, 2024, 33(10): 104208.
[6] Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber
Si-Yu Chen(陈思雨), Hai-Qin Deng(邓海芹), Wan-Ru Zhang(张万儒), Yong-Ping Dai(戴永平), Tao Wang(王涛), Qiang Yu(俞强), Can Li(李灿), Man Jiang(姜曼), Rong-Tao Su(粟荣涛), Jian Wu(吴坚), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(7): 074203.
[7] Antimonene-based saturable absorber for a soliton mode-locked and Q-switched fiber laser in the 2 μm wavelength region
H Ahmad, B Nizamani, M Z Samion, N Yusoff, and M F Ismail. Chin. Phys. B, 2023, 32(6): 064205.
[8] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[9] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[10] CsPbBr3 nanocrystal for mode-locking Tm-doped fiber laser
Yan Zhou(周延), Renli Zhang(张仁栗), Xia Li(李夏), Peiwen Kuan(关珮雯), Dongyu He(贺冬钰), Jingshan Hou(侯京山), Yufeng Liu(刘玉峰), Yongzheng Fang(房永征), Meisong Liao(廖梅松). Chin. Phys. B, 2019, 28(9): 094203.
[11] Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser
Syarifah Aloyah Syed Husin, Farah Diana Muhammad, Che Azurahanim Che Abdullah, Siti Huzaimah Ribut, Mohd Zamani Zulkifli, Mohd Adzir Mahdi. Chin. Phys. B, 2019, 28(8): 084207.
[12] Observation of self-Q-switching in bulk Yb: GdYSiO laser
Shuang Gong(公爽), Jin-Rong Tian(田金荣), He-Yang Guo Yu(郭于鹤洋), Zi-Kai Dong(董自凯), Chang-Xing Xu(许昌兴), Wen-Ping Zhang(张文平), Yan-Rong Song(宋晏蓉). Chin. Phys. B, 2018, 27(4): 044202.
[13] Spectral dynamical behavior in two-section, quantum well, mode-locked laser at 1.064μm
Si-Hang Wei(魏思航), Ben Ma(马奔), Ze-Sheng Chen(陈泽升), Yong-Ping Liao(廖永平), Hong-Yue Hao(郝宏玥), Yu Zhang(张宇), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(7): 074208.
[14] Observation of wavelength-switchable solitons in an all-polarization-maintaining erbium-doped fiber cavity based on graphene saturable absorber reflector
Kuo Meng(孟阔), Lian-Qing Zhu(祝连庆), Fei Luo(骆飞). Chin. Phys. B, 2017, 26(1): 014205.
[15] A 12.1-W SESAM mode-locked Yb:YAG thin disk laser
Yingnan Peng(彭英楠), Zhaohua Wang(王兆华), Dehua Li(李德华), Jiangfeng Zhu(朱江峰), Zhiyi Wei(魏志义). Chin. Phys. B, 2016, 25(5): 054205.
No Suggested Reading articles found!