|
|
Demonstration of a cold atom beam splitter on atom chip |
Xiaojun Jiang(蒋小军)1,2, Xiaolin Li(李晓林)1, Haichao Zhang(张海潮)1, Yuzhu Wang(王育竹)1 |
1 Key Laboratory for Quantum Optics and Center for Cold Atom Physics of Chinese Academy of Sciences(CAS), Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We report an experimental demonstration of a new scheme to split cold atoms on an atom chip. The atom chip consists of a U-wire and a Z-wire. The cold atom cloud is initially loaded and prepared in the Z-trap, which is split into two separate parts by switching on the current of the U-wire. The two separate atom clouds have a distance more than one millimeter apart from each other and show almost symmetrical profiles, corresponding to about a 50/50 splitting ratio.
|
Received: 14 January 2016
Revised: 06 April 2016
Accepted manuscript online:
|
PACS:
|
03.75.Be
|
(Atom and neutron optics)
|
|
03.65.Nk
|
(Scattering theory)
|
|
37.10.Gh
|
(Atom traps and guides)
|
|
Fund: Project supported by the State Key Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107). |
Corresponding Authors:
Haichao Zhang, Yuzhu Wang
E-mail: zhanghc@siom.ac.cn;yzwang@mail.shcnc.ac.cn
|
Cite this article:
Xiaojun Jiang(蒋小军), Xiaolin Li(李晓林), Haichao Zhang(张海潮), Yuzhu Wang(王育竹) Demonstration of a cold atom beam splitter on atom chip 2016 Chin. Phys. B 25 080311
|
[1] |
Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
|
[2] |
Juffmann T, Milic A, Müllneritsch M, Asenbaum P, Tsukernik A, Tüxen J, Mayor M, Cheshnovsky O and Arndt M 2012 Nat. Nanotechnol. 7 297
|
[3] |
Cronin A, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051
|
[4] |
Martin P J, Oldaker B G, Miklich A H and Pritchard D E 1988 Phys. Rev. Lett. 60 515B
|
[5] |
Kasevich, M and Chu S 1991 Phys. Rev. Lett. 67 181
|
[6] |
Wu S, Wang Y J, Diot Q and Prentiss M 2005 Phys. Rev. A 71 043602
|
[7] |
Machluf S, Japha Y and Folman R 2013 Nat. Commun. 4 2424
|
[8] |
Rasel E M, Oberthaler M K, Batelaan H, Schmiedmayer J and Zeilinger A 1995 Phys. Rev. Lett. 75 2633
|
[9] |
Brezger, B, Hackermuller L, Uttenthaler S, Petschinka J, Arndt M and Zeilinger A 2002 Phys. Rev. Lett. 88 100404
|
[10] |
Wang Y J, Anderson D Z, Bright V M, Cornell E A, Diot Q, Kishimoto T, Prentiss M, Saravanan R A, Segal S R and Wu S 2005 Phys. Rev. Lett. 94 090405
|
[11] |
Pezze L and Smerzi A 2006 Phys. Rev. A 73 011801
|
[12] |
Li W, He T and Smerzi A 2014 Phys. Rev. Lett. 113 023003
|
[13] |
Lenef A, Hammond T, Smith E, Chapman M, Rubenstein R and Pritchard D 1997 Phys. Rev. Lett. 78 760
|
[14] |
Gustavson T L, Landragin A and Kasevich M A 2000 Class. Quantum Gravity 17 2385
|
[15] |
Peters A, Chung K Y and Chu S 1999 Nature 400 849
|
[16] |
Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
|
[17] |
Fixler J B, Foster G T, McGuirk J M and Kasevich M A 2007 Science 315 74
|
[18] |
Dubetsky B and Kasevich M A 2006 Phys. Rev. A 74 023615
|
[19] |
Houde O, Kadio D and Pruvost L 2000 Phys. Rev. Lett. 85 5543
|
[20] |
Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E and Leanhardt A E 2004 Phys. Rev. Lett. 92 050405
|
[21] |
Mu R W, Wang Z L, Li Y L, Mu X M Ji R W, Wang Z L, Li Y L, Ji X M and Yin J P 2010 Eur. Phys. J. D 59 291
|
[22] |
McDonald G D, Keal H, Altin P A, Debs J E, Bennetts S, Kuhn C C N, Hardman K S, Johnsson M T, Close J D and Robins N P 2013 Phys. Rev. A 87 013632
|
[23] |
Cassettari D, Hessmo B, Folman R, Maier T and Schmiedmayer J 2000 Phys. Rev. Lett. 85 5483
|
[24] |
Müller D, Cornell E A, Prevedelli M, Schwindt P D D, Zozulya A and Anderson D Z 2000 Opt. Lett. 25 1382
|
[25] |
Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J and Kruger P 2005 Nat. Phys. 1 57
|
[26] |
Lesanovsky I and von Klitzing W 2007 Phys. Rev. Lett. 99 083001
|
[27] |
Shin Y, Sanner C, Jo G B, Pasquini T A, Saba M, Ketterle W, Pritchard D E, Vengalattore M and Prentiss M 2005 Phys. Rev. A 72 021604
|
[28] |
Fortágh J and Zimmermann C 2007 Rev. Mod. Phys. 79 235
|
[29] |
Hinds E A, Vale C J and Boshier M G 2001 Phys. Rev. Lett. 86 1462
|
[30] |
Hommelhoff P, Hänsel W, Steinmetz T, Hänsch T W and Reichel J 2005 New J. Phys. 7 3
|
[31] |
Ke M, Yan B, Cheng F and Wang Y Z 2009 Chin. Phys. B 18 4823
|
[32] |
Yan B, Cheng F, Ke M, Li X L, Tang J Y and Wang Y Z 2009 Chin. Phys. B 18 4259
|
[33] |
Jackson J D 1999 Classical Electrodynamics, 3nd edn. (New York:Wiley)
|
[34] |
Reichel J, Hänsel W and Hänsch T W 1999 Phys. Rev. Lett. 83 3398
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|