Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 013202    DOI: 10.1088/1674-1056/ac9e95
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Integrated, reliable laser system for an 87Rb cold atom fountain clock

Zhen Zhang(张镇)1,2, Jing-Feng Xiang(项静峰)3, Bin Xu(徐斌)3, Pan Feng(冯盼)3, Guang-Wei Sun(孙广伟)3, Yi-Ming Meng(孟一鸣)1,2, Si-Min-Da Deng(邓思敏达)1,2, Wei Ren(任伟)3, Jin-Yin Wan(万金银)3, and De-Sheng Lü(吕德胜)1,3,†
1 Key Laboratory of Quantum Optics and Center of Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Aerospace Laser Engineering Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  We designed, assembled, and tested a reliable laser system for 87Rb cold atom fountain clocks. The laser system is divided into four modules according to function, which are convenient for installing, adjusting, maintaining, and replacing of the modules. In each functional module, all optical components are fixed on a baseplate with glue and screws, ensuring the system's structural stability. Mechanical stability was verified in a 6.11g RMS randomvibration test, where the change in output power before and after vibration was less than 5%. Thermal stability was realized by optimizing of the structure and appropriate selection of component materials of the modules through thermal simulation. In the laser splitting and output module, the change in laser power was less than 20% for each fiber in thermal cycles from 5 ℃ to 43 ℃. Finally, the functionality of the laser system was verified for a rubidium fountain clock.
Keywords:  cold atoms      laser system      atomic fountain clock      reliability  
Received:  04 August 2022      Revised:  20 October 2022      Accepted manuscript online:  31 October 2022
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.60.By (Design of specific laser systems)  
Corresponding Authors:  De-Sheng Lü     E-mail:  dslv@siom.ac.cn

Cite this article: 

Zhen Zhang(张镇), Jing-Feng Xiang(项静峰), Bin Xu(徐斌), Pan Feng(冯盼), Guang-Wei Sun(孙广伟),Yi-Ming Meng(孟一鸣), Si-Min-Da Deng(邓思敏达), Wei Ren(任伟),Jin-Yin Wan(万金银), and De-Sheng Lü(吕德胜) Integrated, reliable laser system for an 87Rb cold atom fountain clock 2023 Chin. Phys. B 32 013202

[1] Bauch A 2003 Measurement Science & Technology 14 1159
[2] Li R, Gibble K and Szymaniec K 2011 Metrologia 48 283
[3] Parker T E 2012 Rev. Sci. Instru. 83 021102
[4] Guena J 2012 Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 59 391
[5] Gerginov V, Nemitz N, Weyers S, Schroeder R, Griebsch D and Wynands R 2010 Metrologia 47 65
[6] Ovchinnikov Y and Marra G 2011 Metrologia 48 446
[7] Levi F, Calonico D, Calosso C E, Godone A, Micalizio S and Costanzo G A 2014 Metrologia 51 270
[8] Wynands R and Weyers S 2005 Metrologia 42 S64
[9] Fang F, Liu N, Liu K, Chen W Suo R and Li T C 2016 J. Phys.: Confer. Series 723 012009
[10] Lisdat C, Grosche G, Quintin N, et al. 2016 Nat. Commun. 7 12443
[11] Bai Y, Wang B, Gao C, Miao J, Zhu X and Wang L 2015 Chin. Opt. Lett. 13 6
[12] Chen F X, Zhao K, Zhou X, Liu T and Zhang S G 2017 Acta Phys. Sin 66 200701 (in Chinese)
[13] Cheng H N, Zhang Z, Deng S, et al. 2021 Rev. Sci. Instru. 92 054702
[14] Wang X W, Liu K K, Cheng H N, Ren W, Xiang J F, Ji J W, Peng X K, Zhang Z, Zhao J B, Ye M F, Li L, Li T, Wang B, Qu Q Z, Liu L and Lü D S 2019 Chin. Opt. Lett. 17 8
[15] Zhang J Y, Chen L L, Cheng Y, et al. 2020 Chin. Phys. B 29 093702
[16] Zhang X, Zhong J, Tang B, et al. 2018 Appl. Opt. 57 6545
[17] Wang Q, Wang Z, Fu Z, et al. 2016 Opt. Commun. 358 82
[18] Müller T, Gilowski M, Zaiser M, et al. 2009 Euro. Phys. J. D 53 273
[19] Battelier B, Barrett B, Fouché L, et al. 2016 Quantum Optics SPIE 9900 99004
[20] Lü D S, Qu Q Z, Wang B, Zhao J B, Li T, Liu L and Wang Y Z 2011 Chin. Phys. B 20 063201
[21] Wang X L, Ruan J, Zhang H, Lin R, Liu D D, Chen J, Guan Y, Yu F X, Shi J R and Zhang S G 2014 IEEE International Frequency Control Symposium (FCS) 2014 1
[22] Chen J, Ruan J, Shi J R, Yu F X, Wang X L and Zhang S G 2016 Eighth International Symposium on Advanced Optical Manufacturing and Testing Technology (AOMATT2016). International Society for Optics and Photonics 9684 968436-2
[23] Ren W, Sun Y G, Wang B, Xia W B, Qu Q Z, Xiang J F, Dong Z R, Lü D S and Liu L 2016 Appl. Opt. 55 3607
[24] Qu Q Z, Xia W B, Wang B, et al. 2015 Acta Optica Sinica 35 0602003 (in Chinese)
[25] Duncker H, Hellmig O, Wenzlawski A, et al. 2014 Appl. Opt. 53 4468
[26] Lévéque T, Faure B, Esnault F X, et al. 2015 Rev. Sci. Instru. 86 033104
[27] Affolderbach C and Mileti G 2005 Rev. Sci. Instru. 76 073108
[28] Donley E A, Heavner T P, Levi F, et al. 2005 Rev. Sci. Instru. 76 063112
[29] Zhang Z, Xiang J F, Meng Y M, Ren W, Deng S M D and Lü D S 2022 Optical Fiber Technology 72 102974
[30] Ji J W, Cheng H N, Zhang Z, Liu K K, Xiang J F, Ren W, Li L and Lü D S 2020 Acta Optica Sinica 40 22 (in Chinese)
[1] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[2] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[3] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[4] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[5] Evaluation of second-order Zeeman frequency shift in NTSC-F2
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Yang Bai(白杨), Fan Yang(杨帆), Yong Guan(管勇), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2021, 30(7): 070601.
[6] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[7] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[8] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[9] A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier
Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛). Chin. Phys. B, 2021, 30(12): 124206.
[10] Cold atom clocks and their applications in precision measurements
Shao-Yang Dai(戴少阳), Fa-Song Zheng(郑发松), Kun Liu(刘昆), Wei-Liang Chen(陈伟亮), Yi-Ge Lin(林弋戈), Tian-Chu Li(李天初), and Fang Fang(房芳). Chin. Phys. B, 2021, 30(1): 013701.
[11] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[12] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[13] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[14] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[15] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
No Suggested Reading articles found!