Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 093701    DOI: 10.1088/1674-1056/24/9/093701

Fast thermometry for trapped atoms using recoil-induced resonance

Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂)
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China

We have employed recoil-induced resonance (RIR) with linewidth on the order of 10 kHz to demonstrate the fast thermometry for ultracold atoms. We theoretically calculate the absorption spectrum of RIR which agrees well with the experimental results. The temperature of the ultracold sample derived from the RIR spectrum is T=84± 4.5 μK, which is close to 85 μK that measured by the method of time-of-flight absorption imaging. To exhibit the fast measurement advantage in applying RIR to the ultracold atom thermometry, we study the dependence of ultracold sample temperature on the trapping beam frequency detuning. This method can be applied to determine the translational temperature of molecules in photoassociation dynamics.

Keywords:  ultracold atoms      temperature measurement      recoil-induced resonance  
Received:  10 January 2015      Revised:  30 March 2015      Accepted manuscript online: 
PACS:  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
  47.80.Fg (Pressure and temperature measurements)  
  82.53.Kp (Coherent spectroscopy of atoms and molecules)  

Project supported by the National Basic Research Development Program of China (Grant No. 2012CB921603), the National High Technology Research and Development Program of China (Grant No. 2011AA010801), the National Natural Science Foundation of China (Grant Nos. 61275209, 11304189, 61378015, and 11434007), and Program for Changjiang Scholars and Innovative Research Team in Universities of China (Grant No. IRT13076).

Corresponding Authors:  Zhao Yan-Ting     E-mail:

Cite this article: 

Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂) Fast thermometry for trapped atoms using recoil-induced resonance 2015 Chin. Phys. B 24 093701

[1] Phillips W D 1998 Rev. Mod. Phys. 70 721
[2] Cai W, Jing H, Zhan M S and Xu J J 2007 Chin Phys. Lett. 24 867
[3] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
[4] Paredes-Barato D and Adams C S 2014 Phys. Rev. Lett. 112 040501
[5] Stannigel K, Hauke P, Marcos D, Hafezi M, Diehl S, Dalmonte M and Zoller P 2014 Phys. Rev. Lett. 112 120406
[6] Wang Y, Hu Z H and Qi L 2015 Chin. Phys. B 24 024203
[7] Brzozowska M, Brzozowski T M, Zachorowski J and Gawlik W 2005 Phys. Rev. A 72 061401R
[8] Cristiani M, Valenzuela T, Gothe H and Eschner J 2010 Phys. Rev. A 81 063416
[9] Lü D S, Qu Q Z, Wang B, Zhao J B, Liu L and Wang Y Z 2011 Chin. Phys. Lett. 28 063201
[10] Vorozcovs A, Weel M, Beattie S, Cauchi S and Kumarakrishnan A 2005 J. Opt. Soc. Am. B 22 943
[11] Peters T, Wittrock B, Blatt F, Halfmann T and Yatsenko L P 2012 Phys. Rev. A 85 063416
[12] Li Z H, Yuan J P, Ji Z H, Zhao Y T, Meng T F, Xiao L T and Jia S T 2014 Appl. Phys. Express 7 096602
[13] Guo J, Berman P R, Dubetsky B and Grynberg G 1992 Phys. Rev. A 46 1426
[14] Courtois J Y, Grynberg G, Lounis B and Verkerk P 1994 Phys. Rev. Lett. 72 3017
[15] Domenico G D, Mileti G and Thomann P 2001 Phys. Rev. A 64 043408
[16] Brzozowska M, Brzozowski T M, Zachorowski J and Gawlik W 2006 Phys. Rev. A 73 063414
[17] Mills A K and Elliott D S 2012 Phys. Rev. A 86 063819
[18] Guo J and Berman P R 1993 Phys. Rev. A 47 4128
[19] Zhang W Z, Cheng H D, Liu L and Wang Y Z 2009 Phys. Rev. A 79 053804
[20] Domenico G D, Mileti G and Thomann P 2001 Phys. Rev. A 64 043408
[21] Dalibard J, Salomon C, Aspect A, Arimondo E, Kaiser R, Vansteenkiste V and Cohen-Tannoudji C 1989 Atomic Physics (Singapore: World Scientific) p. 199
[22] Marangoni B S, Menegatti C R and Marcassa L G 2010 Laser Phys. 20 557
[1] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[2] High-precision nuclear magnetic resonance probe suitable for in situ studies of high-temperature metallic melts
Ao Li(李傲), Wei Xu(许巍), Xiao Chen(陈霄), Bing-Nan Yao(姚冰楠), Jun-Tao Huo(霍军涛), Jun-Qiang Wang(王军强), and Run-Wei Li(李润伟). Chin. Phys. B, 2022, 31(4): 040706.
[3] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[4] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[5] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[6] Quantitative temperature imaging at elevated pressures and in a confined space with CH4/air laminar flames by filtered Rayleigh scattering
Bo Yan(闫博), Li Chen(陈力), Meng Li(李猛), Shuang Chen(陈爽), Cheng Gong(龚诚), Fu-Rong Yang(杨富荣), Yun-Gang Wu(吴运刚), Jiang-Ning Zhou(周江宁), Jin-He Mu(母金河). Chin. Phys. B, 2020, 29(2): 024701.
[7] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
[8] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[9] Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业). Chin. Phys. B, 2016, 25(10): 103202.
[10] Systematically investigating the polarization gradient cooling in an optical molasses of ultracold cesium atoms
Ji Zhong-Hua (姬中华), Yuan Jin-Peng (元晋鹏), Zhao Yan-Ting (赵延霆), Chang Xue-Fang (常雪芳), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2014, 23(11): 113702.
[11] Transmission probability of the two-mode mazer with injected atomic coherence
Yuan Chun-Hua (袁春华), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2005, 14(1): 144-148.
No Suggested Reading articles found!