Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 083303    DOI: 10.1088/1674-1056/ab9611
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field

Ji-Zhou Wu(武寄洲)1,2, Yu-Qing Li(李玉清)1,2, Wen-Liang Liu(刘文良)1,2, Peng Li(李鹏)3, Xiao-Feng Wang(王晓锋)1, Peng Chen(陈鹏)1, Jie Ma(马杰)1,2,3, Lian-Tuan Xiao(肖连团)1,2, Suo-Tang Jia(贾锁堂)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
Abstract  

We report an effective method for enhancing the photoassociation of ultracold atoms using a non-resonant magnetic field, which enables the manipulation of the coupling between the wavefunctions of the colliding atomic pairs and the excited molecules. A series of photoassociation spectra are measured for different magnetic fields. We show that the photoassociation rate is significantly dependent on the non-resonant magnetic field. A qualitatively theoretical explanation is provided, and shows a good agreement with the experimental result.

Keywords:  photoassociation      ultracold atoms      magnetic field  
Received:  20 April 2020      Revised:  15 May 2020      Accepted manuscript online: 
PACS:  33.20.Sn (Rotational analysis)  
  34.50.-s (Scattering of atoms and molecules)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61722507, 61675121, and 61705123), PCSIRT, China (Grant No. IRT17R70), 111 Project, China (Grant No. D18001), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (OIT), China, the Applied Basic Research Project of Shanxi Province, China (Grant Nos. 201801D221004, 201901D211191, and 201901D211188), the Shanxi 1331 KSC, and Collaborative Grant by the Russian Foundation for Basic Research and the National Natural Science Foundation of China (Grant Nos. 6191101339 and 20-53-53025 in the RFBR classification).

Corresponding Authors:  Yu-Qing Li     E-mail:  lyqing2006@sxu.edu.cn

Cite this article: 

Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂) Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field 2020 Chin. Phys. B 29 083303

[1] Zelevinsky T, Kotochigova S and Ye J 2008 Phys. Rev. Lett 100 043201
[2] Yelin S F, Kirby K and Côté R 2006 Phys. Rev. A 74 050301
[3] Peng X H, Zhang J F, Du J F and Suter D 2009 Phys. Rev. Lett 103 140501
[4] Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S and Ye J 2010 Science 327 853
[5] Chen P, Li Y Q, Zhang Y C, Wu J Z, Ma J, Xiao L T and Jia S T 2013 Chin. Phys. B 22 093301
[6] Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys 78 483
[7] Naidon P and Julienne P S 2006 Phys. Rev. A 74 062713
[8] Zhu S B, Qian J and Wang Y Z 2017 Chin. Phys. B 26 046702
[9] Anderson D A, Miller S A and Raithel G 2014 Phys. Rev. Lett 112 163201
[10] Bohn J L and Julienne P S 1999 Phys. Rev. A 60 414
[11] Kallush S and Kosloff R 2007 Phys. Rev. A 76 053408
[12] Zhang W, Wang G R and Cong S L 2011 Phys. Rev. A 83 045401
[13] Chakraborty D, Hazra J and Deb B 2011 J. Phys. B:At. Mol. Opt. Phys 44 095201
[14] Pellegrini P, Gacesa M and Côté R 2008 Phys. Rev. Lett 101 053201
[15] Tolra B L, Hoang N, T'Jampens B, Vanhaecke N, Drag C, Crubellier A, Comparat D and Pillet P 2003 Europhys. Lett 64 171
[16] Junker M, Dries D, Welford C, Hitchcock J, Chen Y P and Hulet R G 2008 Phys. Rev. Lett 101 060406
[17] Krzyzewski S P, Akin T G, Dizikes J, Morrison Michael A and Abraham E R I 2015 Phys. Rev. A 92 062714
[18] Taie S, Watanabe S, Ichinose T and Takahashi Y 2016 Phys. Rev. Lett 116 043202
[19] Zhao L, Yue D, Liu C, Wang M, Han Y and Gao C 2019 Chin. Phys. B 28 030702
[20] Ren Z M, Wang J and Zhao R X 2019 Chin. Phys. B 28 048301
[21] Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C and Grimm R 2006 Nature 440 315
[22] Li Y Q, Feng G S, Xu R D, Wang X F, Wu J Z, Chen G, Dai X C, Ma J, Xiao L T and Jia S T 2015 Phys. Rev. A 91 053604
[23] Wang X Q, Li Y Q, Feng G S, Wu J Z, Ma J, Xiao L T and Jia S T 2018 Chin. Phys. B 27 018702
[24] Weber T, Herbig J, Mark M, Nägerl H C and Grimm R 2003 Science 299 232
[25] Wu J Z, Ji Z H, Zhang Y C, Wang L R, Zhao Y T, Ma J, Xiao L T and Jia S T 2011 Opt. Lett 36 2038
[26] Li Y Q, Feng G S, Liu W L, Wu J Z, Ma J, Xiao L T and Jia S T 2015 Opt. Lett 40 2241
[27] McKenzie C, Denschlag J H, Häffner H, Browaeys A, de Araujo Luís E E, Fatemi F K, Jones K M, Simsarian J E, Cho D, Simoni A, Tiesinga E, Julienne P S, Helmerson K, Lett P D, Rolston S L and Phillips W D 2002 Phys. Rev. Lett 88 120403
[28] Lange A D, Pilch K, Prantner A, Ferlaino F, Engeser B, Nägerl H C, Grimm R and Chin C 2009 Phys. Rev. A 79 013622
[29] Bouloufa N, Crubellier A and Dulieu O 2007 Phys. Rev. A 75 052501
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[4] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[5] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[9] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[10] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[11] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[12] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[13] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[14] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[15] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
No Suggested Reading articles found!