|
|
Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field |
Ji-Zhou Wu(武寄洲)1,2, Yu-Qing Li(李玉清)1,2, Wen-Liang Liu(刘文良)1,2, Peng Li(李鹏)3, Xiao-Feng Wang(王晓锋)1, Peng Chen(陈鹏)1, Jie Ma(马杰)1,2,3, Lian-Tuan Xiao(肖连团)1,2, Suo-Tang Jia(贾锁堂)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We report an effective method for enhancing the photoassociation of ultracold atoms using a non-resonant magnetic field, which enables the manipulation of the coupling between the wavefunctions of the colliding atomic pairs and the excited molecules. A series of photoassociation spectra are measured for different magnetic fields. We show that the photoassociation rate is significantly dependent on the non-resonant magnetic field. A qualitatively theoretical explanation is provided, and shows a good agreement with the experimental result.
|
Received: 20 April 2020
Revised: 15 May 2020
Accepted manuscript online:
|
PACS:
|
33.20.Sn
|
(Rotational analysis)
|
|
34.50.-s
|
(Scattering of atoms and molecules)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61722507, 61675121, and 61705123), PCSIRT, China (Grant No. IRT17R70), 111 Project, China (Grant No. D18001), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (OIT), China, the Applied Basic Research Project of Shanxi Province, China (Grant Nos. 201801D221004, 201901D211191, and 201901D211188), the Shanxi 1331 KSC, and Collaborative Grant by the Russian Foundation for Basic Research and the National Natural Science Foundation of China (Grant Nos. 6191101339 and 20-53-53025 in the RFBR classification). |
Corresponding Authors:
Yu-Qing Li
E-mail: lyqing2006@sxu.edu.cn
|
Cite this article:
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂) Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field 2020 Chin. Phys. B 29 083303
|
[1] |
Zelevinsky T, Kotochigova S and Ye J 2008 Phys. Rev. Lett 100 043201
|
[2] |
Yelin S F, Kirby K and Côté R 2006 Phys. Rev. A 74 050301
|
[3] |
Peng X H, Zhang J F, Du J F and Suter D 2009 Phys. Rev. Lett 103 140501
|
[4] |
Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S and Ye J 2010 Science 327 853
|
[5] |
Chen P, Li Y Q, Zhang Y C, Wu J Z, Ma J, Xiao L T and Jia S T 2013 Chin. Phys. B 22 093301
|
[6] |
Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys 78 483
|
[7] |
Naidon P and Julienne P S 2006 Phys. Rev. A 74 062713
|
[8] |
Zhu S B, Qian J and Wang Y Z 2017 Chin. Phys. B 26 046702
|
[9] |
Anderson D A, Miller S A and Raithel G 2014 Phys. Rev. Lett 112 163201
|
[10] |
Bohn J L and Julienne P S 1999 Phys. Rev. A 60 414
|
[11] |
Kallush S and Kosloff R 2007 Phys. Rev. A 76 053408
|
[12] |
Zhang W, Wang G R and Cong S L 2011 Phys. Rev. A 83 045401
|
[13] |
Chakraborty D, Hazra J and Deb B 2011 J. Phys. B:At. Mol. Opt. Phys 44 095201
|
[14] |
Pellegrini P, Gacesa M and Côté R 2008 Phys. Rev. Lett 101 053201
|
[15] |
Tolra B L, Hoang N, T'Jampens B, Vanhaecke N, Drag C, Crubellier A, Comparat D and Pillet P 2003 Europhys. Lett 64 171
|
[16] |
Junker M, Dries D, Welford C, Hitchcock J, Chen Y P and Hulet R G 2008 Phys. Rev. Lett 101 060406
|
[17] |
Krzyzewski S P, Akin T G, Dizikes J, Morrison Michael A and Abraham E R I 2015 Phys. Rev. A 92 062714
|
[18] |
Taie S, Watanabe S, Ichinose T and Takahashi Y 2016 Phys. Rev. Lett 116 043202
|
[19] |
Zhao L, Yue D, Liu C, Wang M, Han Y and Gao C 2019 Chin. Phys. B 28 030702
|
[20] |
Ren Z M, Wang J and Zhao R X 2019 Chin. Phys. B 28 048301
|
[21] |
Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C and Grimm R 2006 Nature 440 315
|
[22] |
Li Y Q, Feng G S, Xu R D, Wang X F, Wu J Z, Chen G, Dai X C, Ma J, Xiao L T and Jia S T 2015 Phys. Rev. A 91 053604
|
[23] |
Wang X Q, Li Y Q, Feng G S, Wu J Z, Ma J, Xiao L T and Jia S T 2018 Chin. Phys. B 27 018702
|
[24] |
Weber T, Herbig J, Mark M, Nägerl H C and Grimm R 2003 Science 299 232
|
[25] |
Wu J Z, Ji Z H, Zhang Y C, Wang L R, Zhao Y T, Ma J, Xiao L T and Jia S T 2011 Opt. Lett 36 2038
|
[26] |
Li Y Q, Feng G S, Liu W L, Wu J Z, Ma J, Xiao L T and Jia S T 2015 Opt. Lett 40 2241
|
[27] |
McKenzie C, Denschlag J H, Häffner H, Browaeys A, de Araujo Luís E E, Fatemi F K, Jones K M, Simsarian J E, Cho D, Simoni A, Tiesinga E, Julienne P S, Helmerson K, Lett P D, Rolston S L and Phillips W D 2002 Phys. Rev. Lett 88 120403
|
[28] |
Lange A D, Pilch K, Prantner A, Ferlaino F, Engeser B, Nägerl H C, Grimm R and Chin C 2009 Phys. Rev. A 79 013622
|
[29] |
Bouloufa N, Crubellier A and Dulieu O 2007 Phys. Rev. A 75 052501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|