| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Real-time observations of the transition dynamics between multiple nonlinear states in a coherently driven Kerr fiber-loop resonator |
| Yayu Cao(曹亚昱)1, Heng Dong(董恒)1, and Xiankun Yao(姚献坤)1,2,3,† |
1 School of Physics, Northwest University, Xi'an 710127, China; 2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China; 3 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China |
|
|
|
|
Abstract Passive Kerr fiber-loop resonators driven by coherent lasers exhibit a variety of nonlinear states, including modulation instability (MI), localized dissipative structures (solitons), and chaos. Although these transitions have been predicted theoretically, experimental real-time observations are rare in coherently driven Kerr fiber-loop resonators. In this study, we observed real-time transitions between the predicted nonlinear states by sweeping detuning both positively and negatively. We discovered the transition path between nonlinear states depending on the direction of detuning, providing new insights into the nonlinear dynamics. Our findings directly validate theoretical predictions and offer potential implications for future nonlinear optical applications.
|
Received: 18 February 2025
Revised: 13 March 2025
Accepted manuscript online: 24 March 2025
|
|
PACS:
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
| |
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
| |
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
| |
42.65.-k
|
(Nonlinear optics)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12475006 and 12004309) and the Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSQ036). |
Corresponding Authors:
Xiankun Yao
E-mail: yaoxk@nwu.edu.cn
|
Cite this article:
Yayu Cao(曹亚昱), Heng Dong(董恒), and Xiankun Yao(姚献坤) Real-time observations of the transition dynamics between multiple nonlinear states in a coherently driven Kerr fiber-loop resonator 2025 Chin. Phys. B 34 074206
|
[1] Sun Y, Parra-Rivas P, Ferraro M, Mangini F andWabnitz S 2023 Chaos, Solitons and Fractals 176 114064 [2] Erkintalo M, Murdoch S G and Coen S 2022 J. R. Soc. N. Z. 52 149 [3] Leo F, Coen S, Kockaert P, Gorza S P, Emplit P and Haelterman M 2010 Nat. Photon. 4 471 [4] Coulibaly S, Taki M, Bendahmane A, Millot G, Kibler B and Clerc M G 2019 Phys. Rev. X 9 011054 [5] Huang T, Zheng H, Xu G, Pan J, Xiao F, SunW, Yan K, Chen S, Huang B, Huang Y and Shum P P 2024 Phys. Rev. A 109 013503 [6] Geng J, Xu S, Jin T, Ding S, Yang L, Wang Y and Zhang Y 2024 Chin. Phys. B 33 014208 [7] Dong X, Yang Q, Spiess C, Bucklew V G and Renninger W H 2020 Phys. Rev. Lett. 125 033902 [8] Kippenberg T J, Gaeta A L, Lipson M and Gorodetsky M L 2018 Science 361 eaan8083 [9] Jang J K, Erkintalo M, Coen S and Murdoch S G 2015 Nat. Commun. 6 7370 [10] Anderson M, Leo F, Coen S, Erkintalo M and Murdoch S G 2016 Optica 3 1071 [11] Mao D, He Z, Zhang Y, Du Y, Zeng C, Yun L, Luo Z, Li T, Sun Z and Zhao J 2022 Light Sci. Appl. 11 25 [12] Qureshi P C, Ng V, Azeem F, Trainor L S, Schwefel H G L, Coen S, Erkintalo M and Murdoch S G 2022 Commun. Phys. 5 123 [13] Rowley M, Hanzard P H, Cutrona A, Bao H, Chu S T, Little B E, Morandotti R, Moss D J, Oppo G L, Totero Gongora J S, Peccianti M and Pasquazi A 2022 Nature 608 303 [14] Liu X, Yao X and Cui Y 2018 Phys. Rev. Lett. 121 023905 [15] Kang H, Zhou A, Zhang Y, Wu X, Yuan B, Peng J, Finot C, Boscolo S and Zeng H 2024 Phys. Rev. Lett. 133 263801 [16] Wang S, Song B L, Dou X H, Qiao F H, Li X, Wang J B and Lv Z G 2024 Chin. Phys. Lett. 41 074203 [17] Chen L T, Qin L G, Tian L J, Huang J H, Zhou N R and Gong S Q 2024 Chin. Phys. B 33 064204 [18] Guo H, Karpov M, Lucas E, Kordts A, Pfeiffer M H P, Brasch V, Lihachev G, Lobanov V E, Gorodetsky M L and Kippenberg T J 2017 Nat. Phys. 13 94 [19] Xu G, Nielsen A U, Garbin B, Hill L, Oppo G L, Fatome J, Murdoch S G, Coen S and Erkintalo M 2021 Nat. Commun. 12 4023 [20] Wang Y, Anderson M, Coen S, Murdoch S G and Erkintalo M 2018 Phys. Rev. Lett. 120 053902 [21] Zhang H, Du Y, Zeng C, Sun Z, Zhang Y, Zhao J and Mao D 2024 Sci. Adv. 10 eadl2125 [22] Wang Y, Garbin B, Leo F, Coen S, Erkintalo M and Murdoch S G 2018 Opt. Lett. 43 3192 [23] Anderson M, Wang Y, Leo F, Coen S, Erkintalo M and Murdoch S G 2017 Phys. Rev. X 7 031031 [24] Godey C, Balakireva I V, Coillet A and Chembo Y K 2014 Phys. Rev. A 89 063814 [25] Leo F, Gelens L, Emplit P, Haelterman M and Coen S 2013 Opt. Express 21 9180 [26] Lugiato L A, Prati F, Gorodetsky M L and Kippenberg T J 2018 Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 376 20180113 [27] Wu X, Peng J, Boscolo S, Finot C and Zeng H 2023 Phys. Rev. Lett. 131 263802 [28] Peng J, Boscolo S, Zhao Z and Zeng H 2019 Sci. Adv. 5 eaax1110 [29] Zakharov V E and Ostrovsky L A 2009 Physica D 238 540 [30] Everitt P J, Sooriyabandara M A, Guasoni M, Wigley P B, Wei C H, McDonald G D, Hardman K S, Manju P, Close J D, Kuhn C C N, Szigeti S S, Kivshar Y S and Robins N P 2017 Phys. Rev. A 96 041601 [31] Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N and Dudley J M 2010 Nat. Phys. 6 790 [32] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054 [33] Dudley J M, Dias F, Erkintalo M and Genty G 2014 Nat. Photon. 8 755 [34] Dudley J M, Genty G, Mussot A, Chabchoub A and Dias F 2019 Nat. Rev. Phys. 1 675 [35] Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214 [36] Pasquazi A, Peccianti M, Razzari L, Moss D J, Coen S, Erkintalo M, Chembo Y K, Hansson T, Wabnitz S, Del’Haye P, Xue X, Weiner A M and Morandotti R 2018 Phys. Rep. 729 1 [37] Brasch V, Geiselmann M, Herr T, Lihachev G, PfeifferMH P, Gorodetsky M L and Kippenberg T J 2016 Science 351 357 [38] Joshi C, Jang J K, Luke K, Ji X, Miller S A, Klenner A, Okawachi Y, Lipson M and Gaeta A L 2016 Opt. Lett. 41 2565 [39] Liu X, Popa D and Akhmediev N 2019 Phys. Rev. Lett. 123 093901 [40] Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L and Kippenberg T J 2014 Nat. Photon. 8 145 [41] Yi X, Yang Q F, Yang K Y, Suh M G and Vahala K 2015 Optica 2 1078 [42] Mao D, Wang H, Zhang H, Zeng C, Du Y, He Z, Sun Z and Zhao J 2021 Nat. Commun. 12 6712 [43] Bao C, Jaramillo-Villegas J A, Xuan Y, Leaird D E, Qi M and Weiner A M 2016 Phys. Rev. Lett. 117 163901 [44] Yi X, Yang Q F, Yang K Y and Vahala K 2018 Nat. Commun. 9 3565 [45] Li Y, Huang S W, Li B, Liu H, Yang J, Vinod A K, Wang K, Yu M, Kwong D-L, Wang H-T, Wong K K Y and Wong C W 2020 Light Sci. Appl. 9 52 [46] Weng W, Bouchand R and Kippenberg T J 2020 Phys. Rev. X 10 021017 [47] Lugiato L A and Lefever R 1987 Phys. Rev. Lett. 58 2209 [48] Hansson T and Wabnitz S 2015 J. Opt. Soc. Am. B 32 1259 [49] Copie F, Conforti M, Kudlinski A, Mussot A, Biancalana F and Trillo S 2017 The Eur. Phys. J. D 71 133 [50] Coen S and Erkintalo M 2013 Opt. Lett. 38 1790 [51] Yang J and Lakoba T I 2007 Stud. Appl. Math. 118 153 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|