Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 014206    DOI: 10.1088/1674-1056/ad011b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Using harmonic beam combining to generate pulse-burst in nonlinear optical laser

Yuan-Zhai Xu(许元斋)1,2, Zhen-Ling Li(李珍玲)1,2, Ao-Nan Zhang(张奥楠)1,2, Ke Liu(刘可)1,†, Jing-Jing Zhang(张晶晶)1,2, Xiao-Jun Wang(王小军)1, Qin-Jun Peng(彭钦军)1, and Zu-Yan Xu(许祖彦)1
1 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitude of pulses in burst with linear polarization output and time gap adjustable, we propose a new method by the harmonic beam combining (HBC). The beam combining is commonly used in adding pulses into the output beam while maintaining the pulse waveform and beam quality. In the HBC, dichroic mirrors are used to combine laser pulses of fundamental wave (FW) into harmonic wave (HW), and nonlinear crystals are used to convert the FW into HW. Therefore, HBC can add arbitrarily more HW pulses to generate pulse-burst in linear polarization with simple structure. The amplitude of each pulse in bursts can be adjusted the same to increase the stability of the burst, the time gap of each pulse can be adjusted precisely by proper time delay. Because HBC adds pulses sequentially, the peak power density of the burst is the same as each pulse, pulses can be combined without concern of back-conversion which often occurs in high peak power density. In the demonstration, the extendibility of HBC was verified by combining two beams with a third beam. The combined efficiency rates were larger than 99%, and the beam quality of each beam was maintained at M2 ≈ 1.4.
Keywords:  pulse-burst      beam combining      nonlinear optics  
Received:  19 September 2023      Revised:  30 September 2023      Accepted manuscript online:  07 October 2023
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020029).
Corresponding Authors:  Ke Liu     E-mail:  liuke0209@mails.ucas.ac.cn

Cite this article: 

Yuan-Zhai Xu(许元斋), Zhen-Ling Li(李珍玲), Ao-Nan Zhang(张奥楠), Ke Liu(刘可), Jing-Jing Zhang(张晶晶), Xiao-Jun Wang(王小军), Qin-Jun Peng(彭钦军), and Zu-Yan Xu(许祖彦) Using harmonic beam combining to generate pulse-burst in nonlinear optical laser 2024 Chin. Phys. B 33 014206

[1] Wu P P and Miles R B 2000 Opt. Lett. 25 1639
[2] Forster D J, Jaggi B, Michalowski A, et al. 2021 Materials 14 40
[3] Mur J and Petkovsek R 2018 Appl. Phys. A 124 62
[4] Hartmann C A, Fehr T, Brajdic M, et al. 2007 J. Laser Micro Nanoen. 2 44
[5] Knappe R, Haloui H, Seifert A, et al. 2010 Laser-based Micro- and Nanopackaging and Assembly IV (Proc. SPIE 7585), February 23, 2010, San Francisco, USA, p. 75850H
[6] Hodgson N, Allegre H, Caprara A, et al. 2021 Frontiers in Ultrafast Optics:Biomedical, Scientific, and Industrial Applications XXI (Proc. SPIE 11676), March 5, 2021, p. 116760G
[7] Jaeggi B, Remund S, Streubel R, et al. 2017 J. Laser Micro Nanoen. 12 267
[8] Konig J, Nolte S and Tunnermann A 2005 Opt. Express 13 10597
[9] Fan T Y 2005 IEEE J. Sel. Top. Quantum Electron. 11 567
[10] Goodno G D, Komine H, Mcnaught S J, et al. 2006 Opt. Lett. 31 1247
[11] Duda M, Novak O, Chyla M, et al. 2020 Laser Phys. 30 5
[12] Leger J R, Holz M, Swanson G J, et al. 1988 Lincoln Lab. J. 1 225
[13] Muller M, Aleshire C, Klenke A, et al. 2020 Opt. Lett. 45 3083
[14] Mcnaught S J, C P Asman, H Injeyan, et al. 2009 Frointiers in Optics, October 11-15, USA, p. FThD2
[15] Zheng Y, Yang Y F, Wang J H, et al. 2016 Opt. Express 24 2063
[16] Chann B, Huang R K, Missaggia L J, et al. 2005 Opt. Lett. 30 2104
[17] Uberna R, Bratcher A and Tiemann B G 2010 Appl. Opt. 49 6762
[18] Ma P F, Jiang M, Wang X L, et al. 2015 IEEE Photon. Technol. Lett. 27 2099
[19] Bammer F, Holzinger B and Schumi T 2006 Opt. Express 14 3324
[20] Petkovsek R, Novak V, Bammer F, et al. 2011 Opt. Express 19 19855
[21] Serak S, Tabiryan N and Zeldovich B 2007 Opt. Lett. 32 169
[22] Thiel M, Fischer J, Von Freymann G, et al. 2010 Appl. Phys. Lett. 97 3
[23] Von Cossart G, Fiedler J and Von Zahn U 1999 Geophys. Res. Lett. 26 1513
[24] Latina M A, Sibayan S A, Shin D H, et al. 1998 Ophthalmology 105 2082
[25] Roy S, Miller J D, Slipchenko M N, et al. 2014 Opt. Lett. 39 6462
[26] Chen C T, Wu Y C, Jiang A D, et al. 1989 J. Opt. Soc. Am. B:Opt. Phys. 6 616
[27] Dunn M H and Ebrahimzadeh M 1999 Science 286 1513
[28] Keszler D A 1996 Curr. Opin. Solid St. Mater. Sci. 1 204
[29] Zhu P, Li D J, Liu Q Y, et al. 2013 Opt. Lett. 38 4716
[30] Tzankov P, Kmetec J, Samartsev I, et al. 2019 Conference on Lasers and Electro-Optics (CLEO 2019 JTu2A), May 5-10, 2019, San Jose, USA, p. JTu2A95
[1] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Terahertz shaping technology based on coherent beam combining
Xiao-Ran Zheng(郑晓冉), Dan-Ni Ma(马丹妮), Guang-Tong Jiang(蒋广通), Cun-Lin Zhang(张存林), and Liang-Liang Zhang(张亮亮). Chin. Phys. B, 2023, 32(11): 114210.
[4] Multifunctional light-field modulation based on hybrid nonlinear metasurfaces
Shuhang Qian(钱树航), Kai Wang(王凯), Jiaxing Yang(杨加兴), Chao Guan(关超), Hua Long(龙华), and Peixiang Lu(陆培祥). Chin. Phys. B, 2023, 32(10): 107803.
[5] High-order effect on the transmission of two optical solitons
Houhui Yi(伊厚会), Yanli Yao(姚延立), Xin Zhang(张鑫), and Guoli Ma(马国利). Chin. Phys. B, 2023, 32(10): 100509.
[6] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[7] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[8] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[9] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[10] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[11] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[12] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[13] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[14] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[15] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
No Suggested Reading articles found!