Dual-wavelength pumped latticed Fermi-Pasta-Ulam recurrences in nonlinear Schrödinger equation
Qian Zhang(张倩)1, Xiankun Yao(姚献坤)1,2,3,†, and Heng Dong(董恒)1
1 School of Physics, Northwest University, Xi'an 710127, China; 2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China; 3 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China
Abstract We show that the nonlinear stage of the dual-wavelength pumped modulation instability (MI) in nonlinear Schrödinger equation (NLSE) can be effectively analyzed by mode truncation methods. The resulting complicated heteroclinic structure of instability unveils all possible dynamic trajectories of nonlinear waves. Significantly, the latticed-Fermi-Pasta-Ulam recurrences on the modulated-wave background in NLSE are also investigated and their dynamic trajectories run along the Hamiltonian contours of the heteroclinic structure. It is demonstrated that there has much richer dynamic behavior, in contrast to the nonlinear waves reported before. This novel nonlinear wave promises to inject new vitality into the study of MI.
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
Fund: Project supported by the National Natural Science Foundation of China (NSFC) (Grant No. 12004309), the Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSQ036), and the Scientific Research Program funded by Shaanxi Provincial Education Department (Grant No. 20JK0947).
Corresponding Authors:
Xiankun Yao
E-mail: yaoxk@nwu.edu.cn
Cite this article:
Qian Zhang(张倩), Xiankun Yao(姚献坤), and Heng Dong(董恒) Dual-wavelength pumped latticed Fermi-Pasta-Ulam recurrences in nonlinear Schrödinger equation 2024 Chin. Phys. B 33 030502
[1] Abdullaev F K, Baizakov B B, Darmanyan S A, Konotop V V and Salerno M 2001 Phys. Rev. A64 043606 [2] Zhao L C 2018 Phys. Rev. E97 062201 [3] Benjamin T B and Feir J E 1967 J. Fluid Mech.27 417 [4] Tai K, Hasegawa A and Tomita A 1986 Phys. Rev. Lett.56 135 [5] Taniuti T and Washimi H 1968 Phys. Rev. Lett.21 209 [6] Zakharov V E and Ostrovsky L A 2009 Physica D238 540 [7] Hammani K, Wetzel B, Kibler B, Fatome J, Finot C, Millot G, Akhmediev N and Dudley J 2011 Opt. Lett.36 2140 [8] Akhmediev N and Korneev V 1986 Theor. Math. Phys.69 1089 [9] Frisquet B, Kibler B and Millot G 2013 Phys. Rev. X3 041032 [10] Mussot A, Kudlinski A, Droques M, Szriftgiser P and Akhmediev N 2014 Phys. Rev. X4 011054 [11] Kimmoun O, Hsu H C, Branger H, Li M S, Chen Y Y, Kharif C, Onorato M, Kelleher E J R, Kibler B, Akhmediev N and Chabchoub A 2016 Sci. Rep.6 srep28516 [12] Pierangeli D, Flammini M, Zhang L, Marcucci G, Agranat A, Grinevich P, Santini P, Conti C and DelRe E 2018 Phys. Rev. X8 041017 [13] Kibler B, Chabchoub A, Gelash A, Akhmediev N and Zakharov V E 2015 Phys. Rev. X5 041026 [14] Liu C and Akhmediev N 2019 Phys. Rev. E100 062201 [15] Liu C, Yang Z Y and Yang W L 2018 Chaos28 083110 [16] Zhao L C, Ling L and Yang Z Y 2018 Phys. Rev. E97 022218 [17] Kibler B, Fatome J, Finot C, Millot G, Genty G, Wetzel B, Akhmediev N, Dias F and Dudley J M 2012 Sci. Rep.2 463 [18] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature450 1054 [19] Akhmediev N, Soto-Crespo J M and Ankiewicz A 2009 Phys. Lett. A373 2137 [20] Liu C, Yang Z, Zhao L, Xin G and Yang W 2014 Opt. Lett.39 1057 [21] Zhao L C, Duan L, Gao P and Yang Z Y 2019 Europhys. Lett.125 40003 [22] Yao X, Liu C, Yang Z Y and Yang W L 2022 Phys. Rev. Res.4 013246 [23] Yao X K, Yang Z Y and Yang W L 2021 Nonlinear Dyn.103 1035 [24] Herbst B M, Ablowitz M J and Ryan E 1991 Comput. Phys. Commun.65 137 [25] Mussot A, Naveau C, Conforti M, Kudlinski A, Copie F, Szriftgiser P and Trillo S 2018 Nat. Photonics12 303 [26] Sheveleva A, Colman P, Dudley J M and Finot C 2023 Opt. Commun.538 129472 [27] Conforti M, Mussot A, Kudlinski A, Nodari S, Dujardin G, De Biévre S, Armaroli A and Trillo A 2016 Phys. Rev. Lett.117 013901 [28] De Angelis C, Santagiustina M and Trillo S 1995 Phys. Rev. A51 774 [29] Mussot A, Conforti M, Trillo S, Copie F and Kudlinski A 2018 Adv. Opt. Photonics10 1 [30] Deng Z, Zhang J, Fan D and Zhang L 2022 New J. Phys.24 063018 [31] Bessin F, Naveau C, Conforti M, Kudlinski A, Szriftgiser P and Mussot A 2022 Commun. Phys.5 6 [32] Vanderhaegen G, Szriftgiser P, Kudlinski A, Armaroli A, Conforti M, Mussot A and Trillo S 2023 Phys. Rev. A108 033507 [33] Haelterman M, Trillo S and Wabnitz S 1992 Opt. Lett.17 745 [34] Trillo S and Wabnitz S 1991 Opt. Lett.16 986 [35] Lan Y, Zhao L C and Luo X 2019 Commun. Nonlinear Sci. Numer. Simul.70 334 [36] Zhao L C, Ling L, Qi J W, Yang Z Y and Yang Z Y 2017 Commun. Nonlinear Sci. Numer. Simul.49 39 [37] Agafontsev D S and Zakharov V E 2016 Nonlinearity29 3551 [38] Luo Z C, Luo A P, Xu W C, Liu J R and Yin H S 2010 Appl. Phys. B100 811 [39] Trillo S, Wabnitz S and Kennedy T A B 1994 Phys. Rev. A50 1732
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.