Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 104210    DOI: 10.1088/1674-1056/ac6eda
Special Issue: SPECIAL TOPIC — Fabrication and manipulation of the second-generation quantum systems
SPECIAL TOPIC—Fabrication and manipulation of the second-generation quantum systems Prev   Next  

Up-conversion detection of mid-infrared light carrying orbital angular momentum

Zheng Ge(葛正)1,2, Chen Yang(杨琛)1,2, Yin-Hai Li(李银海)1,2, Yan Li(李岩)1,2, Shi-Kai Liu(刘世凯)1,2, Su-Jian Niu(牛素俭)1,2, Zhi-Yuan Zhou(周志远)1,2,†, and Bao-Sen Shi(史保森)1,2,‡
1. CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2. CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Frequency up-conversion is an effective method of mid-infrared (MIR) detection by converting long-wavelength photons to the visible domain, where efficient detectors are readily available. Here, we generate MIR light carrying orbital angular momentum (OAM) from a difference frequency generation process and perform up-conversion on it via sum frequency conversion in a bulk quasi-phase-matching crystal. The maximum quantum conversion efficiencies from MIR to visible are 34.0%, 10.4%, and 3.5% for light with topological charges of 0, 1, and 2, respectively, achieved by utilizing an optimized strong pump light. We also verify the OAM conservation with a specially designed interferometer, and the results agree well with the numerical simulations. Our study opens up the possibilities for generating, manipulating, and detecting MIR light that carries OAM, and will have great potential for optical communications and remote sensing in the MIR regime.
Keywords:  nonlinear optics      frequency up-conversion      mid-infrared detection  
Received:  21 February 2022      Revised:  09 May 2022      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92065101 and 11934013) and Anhui Initiative In Quantum Information Technologies (Grant No. AHY020200).
Corresponding Authors:  Zhi-Yuan Zhou, Bao-Sen Shi     E-mail:;

Cite this article: 

Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森) Up-conversion detection of mid-infrared light carrying orbital angular momentum 2022 Chin. Phys. B 31 104210

[1] Abedin M N, Mlynczak M G and Refaat T F 2010 Proc. SPIE 7808, Infrared Remote Sensing and Instrumentation XVIII, 78080V (27 August 2010)
[2] Li J, Parchatka U, Königstedt R and Fischer H 2012 Opt. Express 20 7590
[3] Wang D, Liang S, He T and Shi Q 2015 Remote Sens. Environ. 167 31
[4] Mintenig S M, Int-Veen I, Löder M G J, Primpke S and Gerdts G 2017 Water Res. 108 365
[5] Chen Y, Zou C, Mastalerz M, Hu S, Gasaway C and Tao X 2015 Int. J. Mol. Sci. 16 30223
[6] Wang Y, Wang Y and Le H Q 2005 Opt. Express 13 6572
[7] Lux A, Müller R, Tulk M, Olivieri C, Zarrabeita R, Salonikios T and Wirnitzer B 2013 Orphanet. J. Rare Dis. 8 94
[8] Wrobel T P and Bhargava R 2018 Anal. Chem. 90 1444
[9] Nallala J, Lloyd G R, Hermes M, Shepherd N and Stone N 2017 Vib. Spectrosc. 91 83
[10] Wang L and Mizaikoff B 2008 Anal. Bioanal. Chem. 391 1641
[11] Walsh B M, Lee H R and Barnes N P 2016 J. Lumin. 169 400
[12] Soibel A, Wright M, Farr W, Keo S, Hill C, Yang R Q and Liu H C 2010 Proc. SPIE 7587, Free-Space Laser Communication Technologies XXII, 75870S (26 February 2010)
[13] Bellei F, Cartwright A P, McCaughan A N, Dane A E, Najafi F, Zhao Q and Berggren K K 2016 Opt. Express 24 3248
[14] Grier D G 2003 Nature 424 810
[15] Bhebhe N, Williams P A C, Rosales-Guzmán C, Rodriguez-Fajardo V and Forbes A 2018 Sci. Rep. 8 17387
[16] Fang X, Ren H and Gu M 2020 Nat. Photonics 14 102
[17] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516
[18] Zhou Z Y, Li Y, Ding D S, Zhang W, Shi S and Shi B S 2015 Opt. Express 23 18435
[19] Chong A, Wan C, Chen J and Zhan Q 2020 Nat. Photonics 14 350
[20] Li F, Xu T, Zhang W, Qiu X, Lu X and Chen L 2018 Appl. Phys. Lett. 113 161109
[21] Liu S, Lou Y and Jing J 2020 Nat. Commun. 11 3875
[22] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[23] Willner A E, Ren Y, Xie G, Yan Y, Li L, Zhao Z, Wang J, Tur M, Molisch A F and Ashrafi S 2017 Phil. Trans. R. Soc. A 375 20150439
[24] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488
[25] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N and Ashrafi S 2015 Adv. Opt. Photon. 7 66
[26] Masuda K, Shinozaki R, Kinezuka Y, Lee J, Ohno S, Hashiyada S, Okamoto H, Sakai D, Harada K, Miyamoto K and Omatsu T 2018 Opt. Express 26 22197
[27] Omatsu T, Miyamoto K, Toyoda K, Morita R, Arita Y and Dholakia K 2019 Adv. Opt. Mater. 7 1801672
[28] Barh A, Rodrigo P J, Meng L, Pedersen C and Tidemand-Lichtenberg P 2019 Adv. Opt. Photon. 11 952
[29] Fang X, Yang G, Wei D, Wei D, Ni R, Ji W, Zhang Y, Hu X, Hu W, Lu Y Q, Zhu S N and Xiao M 2016 Opt. Lett. 41 1169
[30] Trajtenberg-Mills S, Juwiler I and Arie A 2015 Laser & Photonics Reviews 9 L40-4
[31] Chen Y, Ni R, Wu Y, Du L, Hu X, Wei D, Zhang Y and Zhu S 2020 Phys. Rev. Lett. 125 143901
[32] Neely T W, Nugent-Glandorf L, Adler F and Diddams S A 2012 Opt. Lett. 37 4332
[33] Buchter K D, Wiegand M C, Herrmann H and Sohler W 2009 CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference pp. 1—1
[34] Liu S L, Liu S K, Li Y H, Shi S, Zhou Z Y and Shi B S 2017 Opt. Express 25 24290
[35] Junaid S, Tomko J, Semtsiv M P, Kischkat J, Masselink W T, Pedersen C and Tidemand-Lichtenberg P 2018 Opt. Express 26 2203
[36] Sephton B, Vallés A, Steinlechner F, Konrad T, Torres J P, Roux F S and Forbes A 2019 Opt. Lett. 44 586
[37] Mrejen M, Erlich Y, Levanon A and Suchowski H 2020 Laser Photonics Rev. 14 2000040
[38] Yang H R, Wu H J, Gao W, Rosales-Guzmán C and Zhu Z H 2020 Opt. Lett. 45 3034
[39] Wu H J, Zhao B, Rosales-Guzman C, Gao W, Shi B S and Zhu Z H 2020 Phys. Rev. Appl. 13 064041
[40] Wu H J, Yu B S, Zhu Z H, Gao W, Ding D S, Zhou Z Y, Hu X P, Rosales-Guzmán C, Shen Y and Shi B S 2022 Optica 9 187
[41] Dam J S, Tidemand-Lichtenberg P and Pedersen C 2012 Nat. Photonics 6 788
[42] Mancinelli M, Trenti A, Piccione S, Fontana G, Dam J S, Tidemand-Lichtenberg P, Pedersen C and Pavesi L 2017 Nat. Commun. 8 15184
[43] Junaid S, Chaitanya Kumar S, Mathez M, Hermes M, Stone N, Shepherd N, Ebrahim-Zadeh M, Tidemand-Lichtenberg P and Pedersen C 2019 Optica 6 702
[44] Huang K, Wang Y, Fang J, Kang W, Sun Y, Liang Y, Hao Q, Yan M and Zeng H 2021 Photon. Res. 9 259
[45] A. S. A, O'Donnell C F, Chaitanya Kumar S, Ebrahim-Zadeh M, Tidemand-Lichtenberg P and Pedersen C 2019 Photon. Res. 7 783
[46] Boyd R W 2010 Nonlinear Optics, 3rd edn. (Singapore: Elsevier Pte Ltd.) pp. 69—74
[47] Tran-Ba-Chu and Broyer M 1985 J. Phys. France 46 523
[48] Zhou Z Y, Li Y, Ding D S, Zhang W, Shi S, Shi B S and Guo G C 2016 Light Sci. Appl. 5 e16019
[49] Agrawal G P 2000 Nonlinear Fiber Optics Nonlinear Science at the Dawn of the 21st Century, ed P L Christiansen, M P Sorensen and A C Scott (Berlin, Heidelberg: Springer) pp. 195—211
[50] Fisher R A and Bischel W K 1975 J. Appl. Phys. 46 4921
[51] Zhou Z Y, Ding D S, Jiang Y K, Li Y, Shi S, Wang X S and Shi B-S 2014 Opt. Express 22 20298
[52] Sephton B, Dudley A and Forbes A 2016 Appl. Opt. 55 7830
[53] Wei D, Cheng Y, Ni R, Zhang Y, Hu X, Zhu S and Xiao M 2019 Phys. Rev. Appl. 11 014038
[54] Liu S, Yang C, Xu Z, Liu S, Li Y, Li Y, Zhou Z, Guo G and Shi B 2020 Phys. Rev. A 101 012339
[55] Li Y, Zhou Z Y, Liu S L, Liu S K, Yang C, Xu Z H, Li Y H and Shi B S 2019 OSA Continuum 2 470
[56] Lunine J I, Macintosh B and Peale S 2009 Phys. Today 62 46
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[3] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[4] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[5] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[6] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[7] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[8] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[9] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[10] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[11] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[12] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[13] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[14] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[15] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
No Suggested Reading articles found!