| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Heterogeneous integration of silicon nitride photonics and CVD-grown WS2 for second harmonic generation |
| Xuhang Jia(贾旭航)1,2,†, Bangren Xu(许邦仁)1,2,†, Jieyi Luo(罗劼舣)1,2,†, Ning Liu(刘宁)1,2, Yuhang Wang(王宇航)1,2, Biyuan Zheng(郑弼元)1,2, Wei Xu(徐威)1,2, and Ken Liu(刘肯)1,2,‡ |
1 College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China; 2 Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China |
|
|
|
|
Abstract Silicon nitride photonics has emerged as a promising integrated optical platform due to its broad transparency window, low optical loss, and mature fabrication technology. However, the inherent centrosymmetric crystal structure of silicon nitride fundamentally restricts its applications in second-order nonlinear optical processes. Monolayer transition metal dichalcogenides, particularly tungsten disulfide (WS$_{2}$), exhibit strong second-order nonlinear responses, making them ideal candidates for nonlinear photonic applications. Herein, we demonstrate a heterogeneously integrated platform combining silicon nitride waveguides with chemical vapor deposition (CVD)-grown monolayer WS$_{2}$, enabling second harmonic generation. A specially designed silica cladding featuring gentle-slope profile on silicon nitride strip waveguides facilitates the integration of centimeter-scale WS$_{2}$ film with photonic circuits. This approach provides a robust solution for incorporating second-order nonlinearity into silicon nitride photonic systems. The demonstrated platform holds significant potential for advancing quantum networks, visible-light lasers, and integrated optical modulation/detection systems.
|
Received: 26 February 2025
Revised: 28 March 2025
Accepted manuscript online: 02 April 2025
|
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
| |
42.82.Et
|
(Waveguides, couplers, and arrays)
|
| |
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
| |
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
| Fund: Project supported by the National Innovative Training Program for College Students of China (Grant No. 2023069) and the University Research and Innovation Project of the National University of Defense Technology. |
Corresponding Authors:
Ken Liu
E-mail: liukener@163.com
|
Cite this article:
Xuhang Jia(贾旭航), Bangren Xu(许邦仁), Jieyi Luo(罗劼舣), Ning Liu(刘宁), Yuhang Wang(王宇航), Biyuan Zheng(郑弼元), Wei Xu(徐威), and Ken Liu(刘肯) Heterogeneous integration of silicon nitride photonics and CVD-grown WS2 for second harmonic generation 2025 Chin. Phys. B 34 074205
|
[1] Zhao J, Fieramosca A, Bao R, Du W, Dini K, Su R, Feng J, Luo Y, Sanvitto D, Liew T C H and Xiong Q 2022 Nat. Nanotechnol. 17 396 [2] Zeng Z X S, Wang X and Pan A L 2020 Acta Phys. Sin. 69 184210 (in Chinese) [3] Lu X, Chang L, Tran M A, Komljenovic T, Bowers J E and Srinivasan K 2024 Nat. Photon. 18 1010 [4] Wang C, Li J, Yi A, Fang Z, Zhou L, Wang Z, Niu R, Chen Y, Zhang J, Cheng Y, Liu J, Dong C H and Ou X 2022 Light Sci. Appl. 11 341 [5] Yao K, Finney N R, Zhang J, Moore S L, Xian L, Tancogne-Dejean N, Liu F, Ardelean J, Xu X, Halbertal D,Watanabe K, Taniguchi T, Ochoa H, Asenjo-Garcia A, Zhu X, Basov D N, Rubio A, Dean C R, Hone J and Schuck P J 2021 Sci. Adv. 7 eabe8691 [6] Zhu C Y, Zhang Z, Qin J K, Wang Z, Wang C, Miao P, Liu Y, Huang P Y, Zhang Y, Xu K, Zhen L, Chai Y and Xu C Y 2023 Nat. Commun. 14 2521 [7] He J L, Chen H W, Pan K Y, Su Y W, Zhang X Y, Li W, Zhu S N and Hu X P 2024 ACS Photon. 11 104111 [8] Franken P A, Hill A E, Peters C W and Weinreich G 1961 Phys. Rev. Lett. 7 118 [9] Thomson D, Zilkie A, Bowers J E, Komljenovic T, Reed G T, Vivien L, Marris-Morini D, Cassan E, Virot L, Fédéli J M, Hartmann J M, Schmid J H, Xu D X, Boeuf P, O’Brien G, Mashanovich G Z and Nedeljkovic M 2016 J. Opt. 18 073003 [10] Shaker L M, Al-Amiery A, IsahakWN RWand Al-AzzawiWK 2023 J. Opt. 13 9770 [11] Shekhar S, BogaertsW, Chrostowski L, Bowers J E, Hochberg M, Soref R and Shastri B J 2024 Nat. Commun. 15 751 [12] Moss D J, Morandotti R, Gaeta A L and Lipson M 2013 Nat. Photon. 7 597 [13] Blumenthal D J, Heideman R, Geuzebroek D, Leinse A and Roeloffzen C 2018 Proc. IEEE 106 2209 [14] Sharma T, Wang J Q, Kaushik B K, Cheng Z Z, Kumar R, Wei Z and Li X J 2020 IEEE Access 8 195436 [15] Xiang C, Jin W and Bowers J E 2022 Photon. Res. 10 A82 [16] Ye Z, Jia H, Huang Z, Shen C, Long J, Shi B, Luo Y H, Gao L, Sun W, Guo H, He J and Liu J 2023 Photon. Res. 11 558 [17] Ma H, Liang J, Hong H, Liu K H, Zou D X,WuMH and Liu K H 2020 Nanoscale 12 22891 [18] Zhang J T, Zhao W N, Yu P, Yang G W and Liu Z 2020 2D Mater. 7 042002 [19] Huang W, Xiao Y, Xia F, Chen X and Zhai T 2024 Adv. Funct. Mater. 34 2310726 [20] Xie Z, Zhao T, Yu X and Wang J 2024 Small 20 2311621 [21] Yang S, Liu D C, Tan Z L, Liu K, Zhu Z H and Qin S Q 2018 ACS Photon. 5 342 [22] Cheng Z, Cao R, Wei K, Yao Y, Liu X, Kang J, Dong J, Shi Z, Zhang H and Zhang X 2021 Adv. Sci. 8 2003834 [23] Jia L, Wu J, Zhang Y, Qu Y, Jia B, Chen Z and Moss D J 2022 Small Methods 6 2101435 [24] Meng Y, Zhong H, Xu Z, He T, Kim J S, Han S, Kim S, Park S, Shen Y, Gong M, Xiao Q and Bae S H 2023 Nanoscale Horiz. 8 1345 [25] Liu N, Liu K and Zhu Z H 2023 Acta Phys. Sin. 72 174202 (in Chinese) [26] Liu N, Yang X, Zhang J, Zhu Z and Liu K 2023 ACS Photon. 10 283 [27] Ye Y, Wong Z J, Lu X, Ni X, Zhu H, Chen X, Wang Y and Zhang X 2015 Nat. Photon. 9 733 [28] Liu N, Yang X, Zhu Z H, Chen F, Zhou Y B, Xu J P and Liu K 2022 Nanoscale 14 49 [29] Liu H L, Shen C C, Su S H, Hsu C L, Li M Y, Li L J 2014 Appl. Phys. Lett. 105 201905 [30] Pfeiffer M H P, Liu J, Raja A S, Morais T, Ghadiani B and Kippenberg T J 2018 Optica 5 884 [31] Cong C, Shang J, Wang Y and Yu T 2018 Adv. Opt. Mater. 6 1700767 [32] Tan Z, Chen X, Liu N, Xu J, Zhang J, Zhu Z, Liu K and Qin S 2024 Laser Photon. Rev. 18 2301281 [33] Liu N, Zhang J, Zhu Z, Xu W and Liu K 2021 Opt. Express 29 27396 [34] Levy J S, Foster M A, Gaeta A L and Lipson M 2011 Opt. Express 19 11415 [35] Puckett M W, Sharma R, Lin H H, Yang M H, Vallini F and Fainman Y 2016 Opt. Express 24 16923 [36] Lyu J B, Zhu T, Zhou Y, Chen Z M, Pi Y Z, Liu Z T, Xu X C, Xu K, Ma X, Wang L, Cao Z Z and Yu S H 2023 Opto-Electron. Sci. 2 230038 [37] Wu Y C, Yang Q P, Shen B T, Tao Y S, Zhang X G, Tao Z H, Xing LW, Ge Z F, Li T T, Bai B W, Shu H W and Wang X J 2024 Opto-Electron. Sci. 3 240012 [38] Zhao B H, Cheng J W, Wu B, Gao D S, Zhou H L and Dong J J 2023 Opto-Electron. Sci. 2 230017 [39] Han H, Ruan S and Xiang B 2024 Laser Photon. Rev. 19 2400649 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|