|
|
Parametric instability in the pure-quartic nonlinear Schrödinger equation |
Yun-Hong Zhang(张云红)1,2 and Chong Liu(刘冲)1,2,3,† |
1 School of Physics, Northwest University, Xi'an 710127, China; 2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China; 3 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China |
|
|
Abstract We study the nonlinear stage of modulation instability (MI) in the non-intergrable pure-quartic nonlinear Schrödinger equation where the fourth-order dispersion is modulated periodically. Using the three-mode truncation, we reveal the complex recurrence of parametric resonance (PR) breathers, where each recurrence is associated with two oscillation periods (PR period and internal oscillation period). The nonlinear stage of parametric instability admits the maximum energy exchange between the spectrum sidebands and central mode occurring outside the MI gain band.
|
Received: 20 October 2023
Revised: 28 November 2023
Accepted manuscript online: 04 December 2023
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.10.-a
|
(Computational methods in statistical physics and nonlinear dynamics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175178 and 12247103), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022KJXX-71), and the Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSY016). |
Corresponding Authors:
Chong Liu
E-mail: chongliu@nwu.edu.cn
|
Cite this article:
Yun-Hong Zhang(张云红) and Chong Liu(刘冲) Parametric instability in the pure-quartic nonlinear Schrödinger equation 2024 Chin. Phys. B 33 030506
|
[1] Benjamin T B and Feir J 1967 J. Fluid Mech. 27 417 [2] Zakharov V and Ostrovsky L 2009 Physica D 238 540 [3] Whitham G B 1965 Physical and Engineering Sciences 283 238 [4] Taniuti T and Washimi H 1968 Phys. Rev. Lett. 21 209 [5] Abdullaev F Kh, Baizakov B B, Darmanyan S A, Konotop V V and Salerno M 2001 Phys. Rev. A 64 043606 [6] Andrade D and Stuhlmeier R 2023 J. Fluid Mech. 958 1103 [7] Cappellini G and Trillo S 1991 J. Opt. Soc. Am. 8 824 [8] Lake B M, Yuen H C, Rungaldier H and Ferguson W E 1977 J. Fluid Mech. 83 49 [9] Simaeys G V, Emplit P and Haelterman M 2001 Phys. Rev. Lett. 87 033902. [10] Akhmediev N 2007 Nature 413 267 [11] Kimmoun O, Hsu H C, Branger H, Li M S, Chen Y Y, Kharif C, Onorato M, Kelleher E J R, Kibler B, Akhmediev N and Chabchoub A 2016 Sci. Rep. 6 28516 [12] Pierangeli D, Flammini M, Zhang L, Marcucci G, Agranat A J, Grinevich P G, Santini P M, Conti C and DelRe E 2018 Phys. Rev. X 8 041017 [13] Akhmediev N and Korneev V 1986 Theoret. Math. Phys. 69 1089 [14] Dudley J M, Genty G, Dias F, Kibler B and Akhmediev N 2009 Opt. Express 24 21497 [15] Liu C, Wu Y H, Chen S C, Yao X K and Akhmediev N 2021 Phys. Rev. Lett. 127 094102 [16] Chen S C, Liu C, Yao X K, Zhao L C and Akhmediev N 2021 Phys. Rev. E 104 024215 [17] Chen S C and Liu C 2022 Physica D 438 133364 [18] Trillo S and Wabnitz S 1991 Opt. Lett. 16 986 [19] Mussot A, Naveau C, Conforti M, Kudlinski A, Copie F, Szriftgiser P and Trillo S 2018 Nat. Photon. 12 303 [20] Conforti M, Mussot A, Kudlinski A, Rota Nodari S, Dujardin G, De Biévre S, Armaroli A and Trillo S 2016 Phys. Rev. Lett. 117 013901 [21] Zhu C X, Yi W, Guo G C and Zhou Z W 2019 Phys. Rev. A 99 023619 [22] Conforti M, Copie F, Mussot A, Kudlinski A and Trillo S 2016 Opt. Lett. 41 5027 [23] Staliunas K, Hang C and Konotop V V 2013 Phys. Rev. A 88 023846 [24] Blanco-Redondo A, de Sterke C M, Sipe J E, Krauss T F, Eggleton B J and Husko C 2016 Nat. Commun. 7 10427 [25] Blanco-Redondo A, de Sterke C M, Husko C and Eggleton B 2017 Opt. Lett. 47 3800 [26] Lo C W, Stefani A, de Sterke C M and Blanco-Redondo A 2018 Opt. Express 26 7786 [27] Taheri H and Matsko A B 2019 Opt. Lett. 44 3086 [28] Zhang Z X, Luo M, Chen J X, Chen L H, Liu M, Luo A P, Xu W C and Luo Z C 2022 Opt. Lett. 47 1750 [29] Qian Z C, Liu M, Luo A P, Luo Z C and Xu W C 2022 Opt. Express 30 22066 [30] Runge F A, Hudson D D, Tam K K K, de Sterke C M and Blanco-Redondo A 2020 Nat. Photon. 14 492 [31] Zeng J L, Dai J X, Hu W and Lu D Q 2022 Appl. Math. Lett. 129 107923 [32] Tam K K K, Alexander T J, Blanco-Redondo A and de Sterke C M 2019 Opt. Lett. 44 3306 [33] Zhao K, Gao C, Xiao X and Yang C 2021 Opt. Lett. 46 761 [34] de Sterke C M, Runge A F J, Hudson D D and Blanco-Redondo A 2021 APL Photon. 6 091101 [35] Yao X K, Liu C, Yang Z Y and Yang W L 2022 Phys. Rev. Res. 4 013246 [36] Tabi C B, Tagwo H, Tiofack C G L and Kofané T C 2022 Opt. Lett. 47 5557 [37] Li Y H, Dai J X, Liu J S, Weng Z W, Hu W and Lu D Q, 2022 Opt. Commun. 524 128790 [38] Wang Z T, Luo C Y, Wang Y W, Ling X H and Zhang L F 2022 Opt. Lett. 47 3800 [39] Dai J X, Zeng J L, Hu W and Lu D Q 2022 Chaos, Solitons and Fractals 165 112867 [40] Zhu Z W, Yang S, He C J and Lin X C 2023 Chaos, Solitons and Fractals 175 113978 [41] Tiofack C G L, Tabi C B, Tagwo H and Kofané T C 2023 Phys. Lett. A 480 128982 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|