Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 074207    DOI: 10.1088/1674-1056/adcc88
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Reconfigurable microring resonators for multipurpose quantum light sources

Yuxing Du(杜昱星)†, Yingwen Liu(刘英文)†, Chao Wu(吴超), Pingyu Zhu(朱枰谕), Chang Zhao(赵畅), Miaomiao Yu(余苗苗), Yan Wang(王焱), Kaikai Zhang(张凯凯), and Ping Xu(徐平)‡
College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
Abstract  Microring resonators (MRRs) are extensively utilized in photonic chips for generating quantum light sources and enabling high-efficiency nonlinear frequency conversion. However, conventional microrings are typically optimized for a single specific function, limiting their versatility in multifunctional applications. In this work, we propose a reconfigurable microring resonator architecture designed to accommodate diverse application requirements. By integrating a cascaded Mach-Zehnder interferometer (MZI) as the microring coupler, the design enables independent control of the quality factors for pump, signal and idler photons through two tunable phase shifters. This capability allows for dynamic tuning and optimization of critical performance parameters, including photon-pair generation rate (PGR), spectral purity and single photon heralding efficiency (HE). The proposed structure is implemented on a silicon photonic chip, and experimental results exhibit a wide range of tunability for these parameters, with excellent agreement with theoretical predictions. This flexible and multi-functional design offers a promising pathway for high-performance, highly integrated on-chip quantum information processing systems.
Keywords:  microring resonators      cascaded Mach-Zehnder interferometer      quantum light sources  
Received:  22 March 2025      Revised:  10 April 2025      Accepted manuscript online:  15 April 2025
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Wi (Nonlinear waveguides)  
  42.82.-m (Integrated optics)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301500) and the National Natural Science Foundation of China (Grant No. 62105366).
Corresponding Authors:  Ping Xu     E-mail:  pingxu520@nju.edu.cn

Cite this article: 

Yuxing Du(杜昱星), Yingwen Liu(刘英文), Chao Wu(吴超), Pingyu Zhu(朱枰谕), Chang Zhao(赵畅), Miaomiao Yu(余苗苗), Yan Wang(王焱), Kaikai Zhang(张凯凯), and Ping Xu(徐平) Reconfigurable microring resonators for multipurpose quantum light sources 2025 Chin. Phys. B 34 074207

[1] Xu F H, Ma X F, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002
[2] Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y and Pan J W 2020 Science 370 1460
[3] Vos K D, Bartolozzi I, Schacht E, Bienstman P and Baets R 2007 Opt. Express 15 7610
[4] Sharping J E, Lee K F, Foster M A, Turner A C, Schmidt B S, Lipson M, Gaeta A L and Kumar P 2006 Opt. Express 14 12388
[5] Silverstone J W, Bonneau D, Ohira K, et al. 2014 Nat. Photon. 8 104
[6] Shacham A, Bergman K and Carloni L P 2008 IEEE Trans. Comput. 57 1246
[7] Zhang Q Y, Xu P and Zhu S N 2018 Chin. Phys. B 27 054207
[8] Bao J M, Fu Z R, Pramanik T, et al. 2023 Nat. Photon. 17 573
[9] Fiorentino M, Voss P L, Sharping J E and Kumar P 2002 IEEE Photon. Technol. Lett. 14 983
[10] Wu C, Liu Y W, Wang Y, et al. 2022 Opt. Express 30 9992
[11] Kwiat P G, Waks E, White A G, Appelbaum I and Eberhard P H 1999 Phys. Rev. A 60 R773
[12] Kaneda F, Christensen B G, Wong J J, Park H S, McCusker K T and Kwiat P G 2015 Optica 2 1010
[13] Matthews J C F, Politi A, Stefanov A and O’brien J L 2009 Nat. Photon. 3 346
[14] Barbarossa G, Matteo AMand ArmeniseMN 1995 J. Lightwave Technol. 13 148
[15] Cai M, Painter O and Vahala K J 2000 Phys. Rev. Lett. 85 74
[16] Tison C C, Steidle J A, Fanto M L, Wang Z, Mogent N A, Rizzo A, Preble S F and Alsing P M 2017 Opt. Express 25 33088
[17] Silverstone JW, Santagati R, Bonneau D, StrainMJ, Sorel M, O’Brien J L and Thompson M G 2015 Nat. Commun. 6 7948
[18] Liu Y W, Wu C, Gu X W, et al. 2019 Opt. Lett. 1 73
[19] Wu C, Liu Y W, Gu X W, et al. 2020 Sci. China-Phys., Mech. Astron. 63 220362
[20] Zheng Q L, Liu J C, Wu C, et al. 2022 Chin. Phys. B 31 024206
[21] Vernon Z, Menotti M, Tison C C, et al. 2017 Opt. Lett. 42 3638
[22] Heuck M, Pant M, and Englund D R 2018 New J. Phys. 20 063046
[23] Wu C, Liu Y W, Gu X W, Xue S C, Yu X X, Kong Y C, Qiang X G, Wu J J, Zhu Z H and Xu P 2019 Chin. Phys. B 28 104211
[24] Guo K, Shi X D, Wang X L, Yang J B, Ding Y H, Ou H Y and Zhao Y J 2018 Photon. Res. 6 587
[25] Gatti A, Corti T, Brambilla E and Horoshko D 2012 Phys. Rev. A 86 053803
[26] Christ A, Laiho K, Eckstein A, Cassemiro K N and Silberhorn C 2011 New J. Phys. 13 033027
[1] Euler-modified pulley-type microring on lithium niobate platform
Wen-Hui Song(宋文慧), Dong-Jie Guo(郭东洁), Ran Yang(杨然), Jia-Chen Duan(端家晨), Zi-Shuo Gu(顾子硕), Ji Tang(汤济), Zhilin Ye(叶志霖), Xiao-Hui Tian(田晓慧), Kunpeng Jia(贾琨鹏), Zhong Yan(严仲), Zhijun Yin(尹志军), Yan-Xiao Gong(龚彦晓), Zhenda Xie(谢臻达), Zhenlin Wang(王振林), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2025, 34(8): 084205.
[2] High-performance and fabrication friendly polarization demultiplexer
Huan Guan(关欢), Yang Liu(刘阳), and Zhiyong Li (李智勇). Chin. Phys. B, 2022, 31(3): 034203.
[3] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
No Suggested Reading articles found!