Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 068402    DOI: 10.1088/1674-1056/adbf83
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Marked improvement of photoelectric response performance based on CNTF/AgNSF/PZT pyroelectric photodetector: A comprehensive study

Bocheng Lv(吕博成)1,†, Xiyu Hong(洪熹宇)1,†,‡, Jinquan Wei(韦进全)2, Mohsin Rafique3, and Zhe Li(李哲)4
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2 Key Laboratory for Advanced Materials Processing Technology of Education Ministry, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
4 Beijing National Research Center for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Pyroelectric materials, known for their ability to convert thermal energy into electrical signals, have garnered significant attention due to their wide-ranging applications. In this work, we report the fabrication of high-performance pyroelectric photodetectors utilizing a heterostructure of carbon nanotube film (CNTF) and silver nanostructure film (AgNSF) on a lead zirconate titanate (PZT) substrate. The resulting device exhibits an impressive broad-spectrum photoelectric response, covering wavelengths from ultraviolet to near-infrared, with a responsivity range of 0.49 ${\rm V}\cdot{\rm W}^{-1}$-1.01 ${\rm V}\cdot{\rm W}^{-1}$ and a fast response time of 8 ms-40 ms. The enhanced photoelectric properties of the CNTF/AgNSF/PZT composite suggest its strong potential for applications in advanced broadband photodetectors, positioning this material system as a promising candidate for next-generation optoelectronic devices.
Keywords:  photoelectric response      pyroelectric material      composite  
Received:  27 December 2024      Revised:  10 March 2025      Accepted manuscript online:  12 March 2025
PACS:  84.60.Jt (Photoelectric conversion)  
  78.20.nc (Photopyroelectric effects)  
  72.80.Tm (Composite materials)  
Fund: Project supported in part by the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202007) and the NSAF (Grant No. U1730246).
Corresponding Authors:  Xiyu Hong     E-mail:  hongxy17@tsinghua.org.cn

Cite this article: 

Bocheng Lv(吕博成), Xiyu Hong(洪熹宇), Jinquan Wei(韦进全), Mohsin Rafique, and Zhe Li(李哲) Marked improvement of photoelectric response performance based on CNTF/AgNSF/PZT pyroelectric photodetector: A comprehensive study 2025 Chin. Phys. B 34 068402

[1] Whatmore R W 1986 Rep. Prog. Phys. 49 1335
[2] Lang S B 2005 Phys. Today 58 31
[3] Erhart S 2013 Phys. Educ. 48 438
[4] Nalwa 2001 Handbook of Advanced Electronic and Photonic Materials and Devices (New York: Academic Press), Vol. 4, p. 1
[5] Lang S B and Muensit S B 2006 Appl. Phys. A: Mater. Sci. Process. 85 125
[6] Wang X Q, Tan C F, Chan K H, et al. 2017 ACS Nano 11 10568
[7] Xue H, Yang Q, Wang D, et al. 2017 Nano Energy 38 147
[8] Park T, Na J, Kim B, et al. 2015 ACS Nano 9 11830
[9] Xie M, Zabek D, Bowen, et al. 2016 Smart Mater. Struct. 25 125023
[10] Zhang Y, Kumar S, Marken F, et al. 2019 Nano Energy 58 183
[11] Ren, et al. 2023 Chin. Phys. Lett. 40 090501
[12] Xu X, Xiao L, Jia Y, et al. 2018 Energy Environ. Sci. 11 2198
[13] Zhang M, Hu Q, Ma K, et al. 2020 Nano Energy 73 104810
[14] Qian W, Wu Z, Jia Y, et al. 2017 Electrochem. Commun. 81 124
[15] You H, Ma X, Wu Z, et al. 2018 Nano Energy 52 351
[16] Wu J, Mao W, Wu Z, et al. 2016 Nanoscale 8 7343
[17] You H, Wu Z, Wang L, et al. 2018 Chemosphere 199 531
[18] Gutmann E, Benke A, Gerth K, et al. 2012 J. Phys. Chem. C 116 5383
[19] Gao F, Li W, Wang X, et al. 2016 Nano Energy 22 19
[20] Wang Z, Yu R, Pan C, et al. 2015 Nat. Commun. 6 8401
[21] Kumar M, Patel M, Lee G N, et al. 2017 ACS Appl. Nano Mater. 1 319
[22] Wang X, Dai Y, Liu R, et al. 2017 ACS Nano 11 8339
[23] Qi J, Ma N, Yang Y, et al. 2018 Adv. Mater. Interfaces 5 1701189
[24] Ma N and Yang Y 2017 Nano Energy 40 352
[25] You H, Wu Z, Zhang L, et al. 2019 Angew. Chem., Int. Ed. 131 11905
[26] You H, Jia Y, Wu Z, et al. 2018 Nat. Commun. 9 2889
[27] Benke A, Mehner E, Rosenkranz M, et al. 2015 J. Phys. Chem. C 119 18278
[28] Sharma M, Singh G and Vaish R 2020 J. Am. Ceram. Soc. 103 4774
[29] Stewart J W, Vella J H, Li W, et al. 2020 Nat. Nanotechnol. 19 158
[30] Lv B C, Liu Y, Wu W, et al. 2022 Nat. Commun. 13 1835
[31] Lv B C, Hu Q Q, Wang P F, et al. 2020 Nanotechnology 31 455201
[32] Wei J Q, Zhu H W, Jia Y, et al. 2007 Carbon 45 2152
[33] Yin J, Liu Y, Zhu J L, et al. 2017 Appl. Phys. Lett. 110 213106
[1] Enhancement of thermal conductivity in diamond/Al composites through vacuum-pressure thermal diffusion sintering
Wenxia Zhang(张文霞), Weixia Shen(沈维霞), Chao Fang(房超), Ye Wang(王烨), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Kenan Li(黎克楠), Biao Wan(万彪), and Zhuangfei Zhang(张壮飞). Chin. Phys. B, 2025, 34(7): 070703.
[2] Synergistic SERS effects in organic/MoS2 heterojunctions with cavity structure enabling nanoplastics screening and antibiotic adsorption behavior detection
Liqi Ma(马立琪), Abdur Rahim(阿卜杜勒-拉希姆), Baiju Lü(吕白菊), Muhammad Saleem(穆罕默德-萨利姆), Xiaoyu Zhang(张晓雨), Mingyue Li(李明月), Muhammad Zahid(穆罕默德-扎希德), and Mei Liu(刘玫). Chin. Phys. B, 2025, 34(4): 047402.
[3] Design and preparation of amorphous carbon nanotubes reinforced copper
Xiaona Ren(任晓娜), Wentao Wu(吴文涛), Zhipei Chen(陈志培), and Changchun Ge(葛昌纯). Chin. Phys. B, 2025, 34(4): 046107.
[4] Influence of surface contamination on electric field distribution of insulators
Xingcai Li(李兴财), Yingge Liu(刘滢格), and Juan Wang(王娟). Chin. Phys. B, 2025, 34(3): 034101.
[5] Overcoming bandwidth limitations in space-coiled acoustic metamaterials through inclined perforated plate design
Jixin Liu(刘继鑫), Fengmin Wu(吴丰民), Ting Li(李婷), Junjun Wang(王军军), Xinye Zou(邹欣晔), and Dong Zhang(章东). Chin. Phys. B, 2025, 34(1): 014303.
[6] A real-time performance improvement method for composite time scale
Fangmin Wang(王芳敏), Wenlin Li(李汶林), Hongfei Dai(戴鸿飞), Chunyi Li(李春怡), Jianhua Zhou(周建华), Shenhui Xue(薛申辉), and Bo Wang(王波). Chin. Phys. B, 2024, 33(9): 090601.
[7] Acoustic radiation force on a cylindrical composite particle with an elastic thin shell and an internal eccentric liquid column in a plane ultrasonic wave field
Rui-Qi Pan(潘瑞琪), Zhi-Wei Du(杜芷玮), Cheng-Hui Wang(王成会), Jing Hu(胡静), and Run-Yang Mo(莫润阳). Chin. Phys. B, 2024, 33(9): 094302.
[8] MHz cut-off frequency and permeability mechanism of iron-based soft magnetic composites
Xiao-Wei Jin(金校伟), Tong Li(李通), Hui-Gang Shi(史慧刚), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2024, 33(9): 097501.
[9] Rational design and synthesis of Cr1-xTe/Ag2Te composites for solid-state thermoelectromagnetic cooling near room temperature
Xiaochen Sun(孙笑晨), Chenghao Xie(谢承昊), Sihan Chen(陈思汗), Jingwei Wan(万京伟), Gangjian Tan(谭刚健), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2024, 33(5): 057201.
[10] Cu-doped nanocomposite Pr2Fe14B/α-Fe ribbons with high (BH)max
Mehran Khan Alam, Shahzab Raza, Chengyong Gao(高成勇), Guangbing Han(韩广兵), and Shishou Kang(康仕寿). Chin. Phys. B, 2024, 33(12): 127504.
[11] Research and application of composite stochastic resonance in enhancement detection
Rui Gao(高蕊), Shangbin Jiao(焦尚彬), and Qiongjie Xue(薛琼婕). Chin. Phys. B, 2024, 33(1): 010203.
[12] A step to the decentralized real-time timekeeping network
Fangmin Wang(王芳敏), Yufeng Chen(陈雨锋), Jianhua Zhou(周建华), Yuting Lin(蔺玉亭), Jun Yang(杨军), Bo Wang(王波), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(1): 010702.
[13] Improving physical properties of poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels via the Hofmeister effect
Rongrong Guo(郭蓉蓉), Deshuai Yu(余德帅), Yifan Huang(黄一帆), Sen Wang(王森), Cong Fu(付聪), Shuihong Zhu(朱水洪), Jia Yi(易佳), Hanqi Wang(王涵淇), and Youhui Lin(林友辉). Chin. Phys. B, 2023, 32(8): 088103.
[14] Asymmetric magnetoimpedance effect and dipolar interactions of FINEMET/SiO2/FePd composite ribbons
Yong-Bin Guo(郭永斌), Dao Wang(王岛), Zhong-Min Wang(王忠民), Lei Ma(马垒), and Zhen-Jie Zhao(赵振杰). Chin. Phys. B, 2023, 32(7): 070703.
[15] Oxidation behavior of Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2C–MxC (M = Ti, Zr, Hf, Nb, Ta) composite ceramic at high temperature
Shuai Xu(徐帅), Tao Wang(王韬), Xingang Wang(王新刚), Lu Wu(吴璐),Zhongqiang Fang(方忠强), Fangfang Ge(葛芳芳), Xuan Meng(蒙萱),Qing Liao(廖庆), Jinchun Wei(魏金春), and Bingsheng Li(李炳生). Chin. Phys. B, 2023, 32(6): 068102.
No Suggested Reading articles found!