Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 010702    DOI: 10.1088/1674-1056/acfa88
INSTRUMENTATION AND MEASUREMENT Prev   Next  

A step to the decentralized real-time timekeeping network

Fangmin Wang(王芳敏)1,2, Yufeng Chen(陈雨锋)1,2, Jianhua Zhou(周建华)3, Yuting Lin(蔺玉亭)3, Jun Yang(杨军)4, Bo Wang(王波)1,2,†, and Lijun Wang(王力军)1,2
1 State Key Laboratory of Precision Space-time Information Sensing Technology, Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
2 Key Laboratory of Photonic Control Technology(Ministry of Education), Tsinghua University, Beijing 100084, China;
3 Beijing Satellite Navigation Center, Beijing 100094, China;
4 Beijing Institute of Radio Metrology and Measurement, Beijing 100854, China
Abstract  The composite time scale (CTS) provides an accurate and stable time-frequency reference for modern science and technology. Conventional CTS always features a centralized network topology, which means that the CTS is accompanied by a local master clock. This largely restricts the stability and reliability of the CTS. We simulate the restriction and analyze the influence of the master clock on the CTS. It proves that the CTS's long-term stability is also positively related to that of the master clock, until the region dominated by the frequency drift of the H-maser (averaging time longer than ~105 s). Aiming at this restriction, a real-time clock network is utilized. Based on the network, a real-time CTS referenced by a stable remote master clock is achieved. The experiment comparing two real-time CTSs referenced by a local and a remote master clock respectively reveals that under open-loop steering, the stability of the CTS is improved by referencing to a remote and more stable master clock instead of a local and less stable master clock. In this way, with the help of the proposed scheme, the CTS can be referenced to the most stable master clock within the network in real time, no matter whether it is local or remote, making democratic polycentric timekeeping possible.
Keywords:  frequency synchronization network      composite time scale      frequency stability      democratic timekeeping  
Received:  19 July 2023      Revised:  08 September 2023      Accepted manuscript online:  18 September 2023
PACS:  06.30.Ft (Time and frequency)  
  06.20.-f (Metrology)  
Fund: This work was supported in part by the National Natural Science Foundation of China (Grant No. 61971259), the National Key R&D Program of China (Grant No. 2021YFA1402102), and Tsinghua University Initiative Scientific Research Program.
Corresponding Authors:  Bo Wang     E-mail:  bo.wang@tsinghua.edu.cn

Cite this article: 

Fangmin Wang(王芳敏), Yufeng Chen(陈雨锋), Jianhua Zhou(周建华), Yuting Lin(蔺玉亭), Jun Yang(杨军), Bo Wang(王波), and Lijun Wang(王力军) A step to the decentralized real-time timekeeping network 2024 Chin. Phys. B 33 010702

[1] Yang Y X, Mao Y and Sun B J 2020 Satell. Navig. 1 1
[2] Lévesque M and Tipper D 2016 IEEE Commun. Surv. Tutor. 18 2926
[3] McGrew W F, Zhang X, Fasano R J, Schaffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[4] Zhang Z H, Gong S P, Dimitrovski A D and Li H S 2013 IEEE Trans. Smart Grid 4 87
[5] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth, R L and Ye J 2016 Phys. Rev. D 94 124043
[6] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[7] Galleani L and Tavella P 2010 IEEE Control Syst. Mag. 30 44
[8] Tavella P and Thomas C 1991 Metrologia 28 57
[9] Panfilo G and Arias F 2019 Metrologia 56 042001
[10] Parker T E and Levine J 1997 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44 1239
[11] Matsakis D 2005 Proceeding of IEEE International Frequency Control Symposium and Exposition, August 29-31, Vancouver, Canada, p. 217
[12] Ido T, Fujieda M, Hachisu H, Hayasaka K, Kajita M, Kumagai M, Li Y, Matsubara K, Nagano S, Ohtsubo N, Hanado Y and Hosokawa M 2017 The Science of Time 2016:Time in Astronomy & Society, Past, Present and Future (Cham:Springer) p. 151
[13] Zhang A M, Gao Y, Liang K, Wang W B, Yang Z Q, Ning D Y and Fang Z J 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium, July 21-25, Prague, Czech Republic, p. 654
[14] Shemar S L, Davis J A and Whibberley P B 2010 EFTF-2010 24th European Frequency and Time Forum, April 13-16, Noordwijk, Netherlands, p. 1
[15] Dong S W 2003 Metrologia 40 S249
[16] Guo Y C, Wang B, Wang F M, Shi F F, Zhang A M, Zhu X, Yang J, Feng K M, Han C H, Li T C and Wang L J 2019 Metrologia 56 045003
[17] Marszalec M, Lusawa M, Czubla A and Lewandowski W 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium, July 21-25, Prague, Czech Republic, p. 805
[18] Azoubib J, Nawrocki J and Lewandowski W 2003 Metrologia 40 S245
[19] Tavella P 2008 Metrologia 45 S183
[20] Panfilo G and Tavella P 2008 Metrologia 45 S108
[21] Zucca C and Tavella P 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 289
[22] Levine J 1999 Rev. Sci. Instrum. 70 2567
[23] Levine J 2012 Rev. Sci. Instrum. 83 021101
[24] Thomas C, Wolf P and Tavella P 1994 Time Scales BIPM Monographie 94 1
[25] Farina M, Galleani L, Tavella P and Bittanti S 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 2257
[26] Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C and Wang L J 2012 Sci. Rep. 2 556
[27] Tavella P and Premoli A 1994 Metrologia 30 479
[28] Torcaso F, Ekstrom C R, Burt E A and Matsakis D N 2000 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47 1183
[1] A combined magnetic field stabilization system for improving the stability of 40Ca+ optical clock
Mengyan Zeng(曾孟彦), Zixiao Ma(马子晓), Ruming Hu(胡如明), Baolin Zhang(张宝林), Yanmei Hao(郝艳梅), Huaqing Zhang(张华青), Yao Huang(黄垚), Hua Guan(管桦), and Kelin Gao(高克林). Chin. Phys. B, 2023, 32(11): 110704.
[2] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[3] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[4] Development of the integrated integrating sphere cold atom clock
Ming-Yuan Yu(于明圆), Yan-Ling Meng(孟艳玲), Mei-Feng Ye(叶美凤), Xin Wang(王鑫), Xin-Chuan Ouyang(欧阳鑫川), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hua-Dong Cheng(成华东), Liang Liu(刘亮). Chin. Phys. B, 2019, 28(7): 070602.
[5] Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz
Guan-Zhong Pan(潘冠中), Bao-Lu Guan(关宝璐), Chen Xu(徐晨), Peng-Tao Li(李鹏涛), Jia-Wei Yang(杨嘉炜), Zhen-Yang Liu(刘振杨). Chin. Phys. B, 2018, 27(1): 014204.
[6] Recent improvements on the atomic fountain clock at SIOM
Du Yuan-Bo (杜远博), Wei Rong (魏荣), Dong Ri-Chang (董日昌), Zou Fan (邹凡), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2015, 24(7): 070601.
[7] Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks
Tian Yuan (田原), Tan Bo-Zhong (谭伯仲), Yang Jing (杨晶), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2015, 24(6): 063302.
[8] Stable 85Rb micro vapour cells: fabrication based on anodic bonding and application in chip-scale atomic clocks
Su Juan(苏娟), Deng Ke(邓科), Guo Deng-Zhu(郭等柱), Wang Zhong(汪中), Chen Jing(陈兢), Zhang Geng-Min(张耿民), and Chen Xu-Zong(陈徐宗). Chin. Phys. B, 2010, 19(11): 110701.
No Suggested Reading articles found!