Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 088103    DOI: 10.1088/1674-1056/acdfc2
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Xiamen University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Xiamen University Prev   Next  

Improving physical properties of poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels via the Hofmeister effect

Rongrong Guo(郭蓉蓉)1, Deshuai Yu(余德帅)1, Yifan Huang(黄一帆)1, Sen Wang(王森)1, Cong Fu(付聪)1, Shuihong Zhu(朱水洪)1, Jia Yi(易佳)2, Hanqi Wang(王涵淇)2, and Youhui Lin(林友辉)1,2,†
1. Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China;
2. National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
Abstract  Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content. However, due to the network defects of polymer gels, traditional hydrogels are usually brittle and fragile, which limits their practical applications. Herein, we present a Hofmeister effect-aided facile strategy to prepare high-performance poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels. Layered montmorillonite nanosheets can not only serve as crosslinking agents to enhance the mechanical properties of the hydrogel but also promote the ion conduction. More importantly, based on the Hofmeister effect, the presence of (NH4)2SO4 can endow nanocomposite hydrogels with excellent mechanical properties by affecting PVA chains' aggregation state and crystallinity. As a result, the as-prepared nanocomposite hydrogels possess unique physical properties, including robust mechanical and electrical properties. The as-prepared hydrogels can be further assembled into a high-performance flexible sensor, which can sensitively detect large-scale and small-scale human activities. The simple design concept of this work is believed to provide a new prospect for developing robust nanocomposite hydrogels and flexible devices in the future.
Keywords:  nanocomposite hydrogels      Hofmeister effect      network structure      poly(vinyl alcohol)      montmorillonite  
Received:  20 April 2023      Revised:  26 May 2023      Accepted manuscript online:  20 June 2023
PACS:  81.05.Qk (Reinforced polymers and polymer-based composites)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.12274356), the Fundamental Research Funds for the Central Universities(Grant No.20720220022), and the 111 Project (Grant No.B16029).
Corresponding Authors:  Youhui Lin     E-mail:  linyouhui@xmu.edu.cn

Cite this article: 

Rongrong Guo(郭蓉蓉), Deshuai Yu(余德帅), Yifan Huang(黄一帆), Sen Wang(王森), Cong Fu(付聪), Shuihong Zhu(朱水洪), Jia Yi(易佳), Hanqi Wang(王涵淇), and Youhui Lin(林友辉) Improving physical properties of poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels via the Hofmeister effect 2023 Chin. Phys. B 32 088103

[1] Meng F, Pritchard R H and Terentjev E M 2016 Macromolecules 49 2843
[2] Liang Y P, He J H and Guo B L 2021 ACS Nano 15 12687
[3] Zhao X D, Pei D N, Yang Y X, Xu K, Yu J, Zhang Y C, Zhang Q, He G, Zhang Y F, Li A, Cheng Y L and Chen X S 2021 Adv. Funct. Mater. 31 2009442
[4] Mo F L, Jiang K, Zhao D, Wang Y Q, Song J and Tan W H 2021 Adv. Drug Deliv. Rev. 168 79
[5] Maharjan B, Park J, Kaliannagounder V K, Awasthi G P, Joshi M K, Park C H and Kim C S 2021 Carbohydr. Polym. 251 117023
[6] Xu X W, Jerca V V and Hoogenboom R 2021 Mater. Horizons 8 1173
[7] Yang Y Y, Wang X, Yang F, Shen H and Wu D C 2016 Adv. Mater. 28 7178
[8] Sun W, Xue B, Li Y, Qin M, Wu J, Lu K, Wu J, Cao Y, Jiang Q and Wang W 2016 Adv. Funct. Mater. 26 9044
[9] Mu Q, Cui K, Wang Z J, Matsuda T, Cui W, Kato H, Namiki S, Yamazaki T, Frauenlob M, Nonoyama T, Tsuda M, Tanaka S, Nakajima T and Gong J P 2022 Nat. Commun. 13 6213
[10] Yang J, Bai R and Suo Z 2018 Adv. Mater. 30 1800671
[11] Dikshit K and Bruns C J 2021 Soft Matter 17 5248
[12] Huang T, Xu H G, Jiao K X, Zhu L P, Brown H R and Wang H L 2007 Adv. Mater. 19 1622
[13] Sui B W, Li Y F and Yang B 2020 Chin. Chem. Lett. 31 1443
[14] Li C P, Mu C D, Lin W and Ngai T 2015 ACS Appl. Mater. Interfaces 7 18732
[15] Wang Q M and Gao Z M 2016 J. Mech. Phys. Solids 94 127
[16] Ling J, Li N, Yang X, Ma J J, Du J, Wang D, Tan Y, Yue F and Xu S M 2017 J. Appl. Polym. Sci. 134 44963
[17] Lee W F and Chen Y C 2004 J. Appl. Polym. Sci. 91 2934
[18] Radu I C, Vasile E, Damian C M, Iovu H, Stanescu P O and Zaharia C 2018 Mater. Plast. 55 263
[19] Su X, Mahalingam S, Edirisinghe M and Chen B Q 2017 ACS Appl. Mater. Interfaces 9 22223
[20] Gao G, Du G, Sun Y and Fu J 2015 ACS Appl. Mater. Interfaces 7 5029
[21] Wu S, Hua M, Alsaid Y, Du Y, Ma Y, Zhao Y, Lo C Y, Wang C, Wu D, Yao B, Strzalka J, Zhou H, Zhu X and He X 2021 Adv. Mater. 33 2007829
[22] Hua M, Wu S, Ma Y, Zhao Y, Chen Z, Frenkel I, Strzalka J, Zhou H, Zhu X and He X 2021 Nature 590 594
[23] He Q, Huang Y and Wang S 2018 Adv. Funct. Mater. 28 1705069
[24] Liang X, Chen G, Lin S, Zhang J, Wang L, Zhang P, Wang Z, Wang Z, Lan Y and Ge Q 2021 Adv. Mater. 33 2102011
[25] Karimi A and Wan Daud W M A 2017 Polym. Compos. 38 1086
[26] Okay O and Oppermann W 2007 Macromolecules 40 3378
[27] Li T, Xiang S, Ma P, Bai H, Dong W and Chen M 2015 J. Polym. Sci. Pt. B-Polym. Phys. 53 1020
[28] Qi X, Zeng Q, Tong X, Su T, Xie L, Yuan K, Xu J and Shen J 2021 J. Hazard. Mater. 402 123359
[29] Li Y, Xu X, Zhao L, Yu D, Chen Y, Du L and Wu X 2022 ACS Appl. Electron. Mater. 4 2396
[30] Cui C, Fu Q, Meng L, Hao S, Dai R and Yang J 2021 ACS Appl. Bio Mater. 4 85
[31] Chen G, Huang J, Gu J, Peng S, Xiang X, Chen K, Yang X, Guan L, Jiang X and Hou L 2020 J. Mater. Chem. A 8 6776
[32] Wei J and Wang Q 2019 Small Methods 3 1900558
[33] Chen Y, Li J, Lu J, Ding M and Chen Y 2022 Polym. Test 108 107516
[34] Dong X, Guo X, Liu Q, Zhao Y, Qi H and Zhai W 2022 Adv. Funct. Mater. 32 2203610
[35] Shen Z, Zhang Z, Zhang N, Li J, Zhou P, Hu F, Rong Y, Lu B and Gu G 2022 Adv. Mater. 34 2203650
[1] Two-dimensional horizontal visibility graph analysis of human brain aging on gray matter
Huang-Jing Ni(倪黄晶), Ruo-Yu Du(杜若瑜), Lei Liang(梁磊), Ling-Ling Hua(花玲玲), Li-Hua Zhu(朱丽华), and Jiao-Long Qin(秦姣龙). Chin. Phys. B, 2023, 32(7): 078501.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] In-situ SAXS study on PET/ PMMT composites during tensile tests
Wei-Dong Cheng(程伟东), Xiao-Hua Gu(顾晓华), Xue Song(宋雪), Peng Zeng(曾鹏), Zhao-Jun Wu(吴昭君), Xue-Qing Xing(邢雪青), Guang Mo(默广), Zhong-Hua Wu(吴忠华). Chin. Phys. B, 2016, 25(1): 017802.
[4] A theoretical exploration of the influencing factors for surface potential
Liu Xin-Min (刘新敏), Yang Gang (杨刚), Li Hang (李航), Tian Rui (田锐), Li Rui (李睿), Ding Wu-Quan (丁武泉), Yuan Ruo (袁若). Chin. Phys. B, 2015, 24(6): 068202.
[5] Optimal network structure to induce the maximal small-world effect
Zhang Zheng-Zhen (张争珍), Xu Wen-Jun (许文俊), Zeng Shang-You (曾上游), Lin Jia-Ru (林家儒). Chin. Phys. B, 2014, 23(2): 028902.
[6] Molecular dynamics study of swelling patterns of Na/Cs-montmorillonites and hydration of interlayer cations
Liu Tao (刘涛), Chen Yu-Qing (陈雨青). Chin. Phys. B, 2013, 22(2): 027103.
[7] Swelling of K+, Na+ and Ca2+-montmorillonites and hydration of interlayer cations: a molecular dynamics simulation
Liu Tao(刘涛), Tian Xiao-Feng(田晓峰), Zhao Yu(赵宇), and Gao Tao(高涛). Chin. Phys. B, 2010, 19(10): 109101.
[8] Atomic and electronic structures of montmorillonite in soft rock
He Man-Chao(何满潮), Fang Zhi-Jie(方志杰), and Zhang Ping(张平). Chin. Phys. B, 2009, 18(7): 2933-2937.
No Suggested Reading articles found!